修复连作大蒜土壤生产力衰退的有机质补偿方案与初步机理
作者:
中图分类号:

S158.2;S56

基金项目:

2022年度江苏省碳达峰碳中和科技创新项目(BE2022805)和中国科学院南京土壤研究所“十四五”创新项目(ISSASIP2201)共同资助


Organic Matter Compensation Scheme and Preliminary Mechanism for Remediation of Soil Productivity Decline in Continuous Cropping Garlic
Author:
Fund Project:

Supported by 2022 Carbon Peak Carbon Neutral Technology Innovation Project of Jiangsu Province, China (No. BE2022805) and the 14th Five-year Plan Innovation Program of the Institute of Soil Science, Chinese Academy of Sciences (No. ISSASIP2201)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对山东省金乡县品牌大蒜主产区长期连作大蒜田中土壤有机质亏缺和大蒜产量连年衰减的典型问题,以不同比例的有机肥替代化肥作为有机质补偿方案,研究了有机肥替代化肥对大蒜产量和土壤障碍的修复效果。试验选取了大于25年连作历史的代表性田块,以未种植大蒜的麦田作为非连作田块对照,设置常规化肥施肥(CF)、以氮(N)为基准进行有机肥替代化肥25%(M25)、50%(M50)和100%(M100)四个处理。结果表明,在长期大蒜连作土壤中,有机替代处理对大蒜的产量衰退具有显著的当季修复效果,增产幅度可达20%,同时改善了土壤中的氮素养分供应状态和土壤大于2 mm团聚体的比例;其中25%有机替代率(M25)具有较佳的经济效益;而在土壤有机质未出现亏缺的非连作土壤中,有机替代处理并无直接的增产效果。综上,本研究明确了增施有机肥仅在土壤有机质出现明显亏缺的连作大蒜土壤中可通过促进大颗粒土壤团聚体的形成和提升全生育期土壤有效态养分的固持能力,进而对连作大蒜土壤生产力的退化具有显著的修复效果。该研究对缓解连作体系中的类似土壤退化问题和维持土壤生产力的可持续性,具有有益的借鉴作用。

    Abstract:

    【Objective】This study aimed to use different proportions of organic fertilizer instead of chemical fertilizer as organic matter compensation schemes to study their effects on garlic yield attenuation in long-term continuous cropping garlic fields in the main garlic-producing area of Jinxiang County, Shandong Province. 【Method】The representative fields with more than 25 years of continuous cropping history were selected in this experiment. The wheat field without garlic planting was used as the non-continuous cropping field control. Four treatments were set up : conventional chemical fertilizer fertilization (CF) and organic fertilizer to replace chemical fertilizer with 25% (M25), 50% (M50) and 100% ( M100) based on nitrogen (N).【Result】The results showed that in the long-term garlic continuous cropping soil, organic fertilizer instead of chemical fertilizer treatment had a significant effect on the increase(20%)of garlic yield in the current season. Also, the content of N in continuous cropping soil and the proportion of soil > 2 mm aggregates were increased, and the N nutrient supply status and soil aggregate structure in the soil were improved. Among the treatments, 25% organic fertilizer instead of chemical fertilizer treatment( N )had the best yield and economic benefit of garlic, and also had a better repair effect on the decline of soil productivity of continuously cropping garlic. However, in non-continuous cropping soil without organic matter deficit, organic substitution treatment did not have a direct effect on increasing production. 【Conclusion】This study clarified that the application of organic fertilizer(partial organic fertilizer instead of chemical fertilizer treatment)based on chemical fertilizer application can only promote the formation of large-grained soil aggregates and enhance the holding capacity of soil available nutrients during the whole growth period in the continuous cropping garlic soil with obvious deficiency of soil organic matter. It also has a significant restoration effect on the degradation of continuously cropping garlic soil productivity. This study provides a useful reference for alleviating similar soil degradation problems and maintaining the sustainability of soil productivity in continuous cropping systems.

    参考文献
    [1] FAOSTAT. Crops and livestock products[OL]. [2023-3-14]. http://faostat.fao.org/
    [2] Gao J X,Pei H X,Xie H. Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China[J]. Bioengineered,2020,11(1):1258-1268.
    [3] Zhang X Y,Zhang Y P,Xu F,et al. Comparison of soil nematodes community structure and diversity in cucumber greenhouses with different cultivation years[J]. Journal of Plant Nutrition and Fertilizer,2017,23(3):696-703. [张雪艳,张亚萍,许帆,等. 不同种植年限黄瓜温室土壤线虫群落结构及多样性的比较[J]. 植物营养与肥料学报,2017,23(3):696-703.]
    [4] Liu C H,He H,He X G,et al. Effects of different years of continuous-cropping of pineapple on soil physiochemical properties and microbial community abundance of pineapple[J]. Soils,2021,53(6):1244-1249. [刘传和,贺涵,何秀古,等. 菠萝不同连作年限对土壤理化性状和微生物群落丰度的影响[J]. 土壤,2021,53(6):1244-1249.]
    [5] Li Y L,Wang B Y,Chang Y F,et al. Effects of reductive soil disinfestation on obstacles and growth of replant seedlings in Sanqi ginseng mono-cropped soils[J]. Acta Pedologica Sinica,2019,56(3):703-715. [李云龙,王宝英,常亚锋,等. 土壤强还原处理对三七连作障碍因子及再植三七生长的影响[J]. 土壤学报,2019,56(3):703-715.]
    [6] Sun G W,Chen R Y,Liu H C. Causes and control measures for continuous cropping obstacles in protected vegetable cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering,2005,21(14):184-188. [孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施[J]. 农业工程学报,2005,21(14):184-188.]
    [7] Wang D C,Wu J G. Effects of organic manure on soil nutrients and aggregate composition in soil under mono-cropping of soybean[J]. Acta Pedologica Sinica,2018,55(4):825-834. [王笃超,吴景贵. 不同有机物料对连作大豆土壤养分及团聚体组成的影响[J]. 土壤学报,2018,55(4):825-834.]
    [8] Yang W J,Hui C,Chen Y X,et al. Stability and fractal features of soil aggregate in irrigated farmland under biochar application[J]. Journal of Soil and Water Conservation,2022,36(6):323-329. [杨卫君,惠超,陈雨欣,等. 生物质炭施用下灌溉农田土壤团聚体稳定性及分型特征[J]. 水土保持学报,2022,36(6):323-329.]
    [9] Xie L H,Liao C L,Lin Q M,et al. Characteristics of soil aggregate organic carbon(SAOC)in paddy soil after increasing or reducing input of organic fertilizer[J]. Soils,2019,51(6):1106-1113. [谢丽华,廖超林,林清美,等. 有机肥增减施后红壤水稻土团聚体有机碳的变化特征[J]. 土壤,2019,51(6):1106-1113.]
    [10] Han Z Q,Chen X M,Qu C C,et al. Sustained effects of biochar application on physico-chemical properties,enzyme activities and quality of soil with continuous planting of cucumber[J]. Journal of Plant Nutrition and Fertilizer,2018,24(5):1227-1236. [韩召强,陈效民,曲成闯,等. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应[J]. 植物营养与肥料学报,2018,24(5):1227-1236.]
    [11] Wang Y H,Pang J W,Wei T,et al. Coupled effects of film mulching and straw-derived carbon inputs on soil aggregate characteristics and crop yields in semiarid areas[J]. Acta Pedologica Sinica,2024,61(1):272-284. [王钰皓,庞津雯,卫婷,等. 旱作农田覆膜和秸秆碳投入对土壤团聚特性及作物产量的影响[J]. 土壤学报,2024,61(1):272-284.]
    [12] Agbede T M,Adekiya A O. Influence of biochar on soil physicochemical properties,erosion potential,and maize(Zea mays L.)grain yield under sandy soil condition[J]. Communications in Soil Science and Plant Analysis,2020,51(20):2559-2568.
    [13] Si H L,Ji L D,Liu J L,et al. Effects of organic fertilizer application rate on maize yield,soil nutrients and biological activity[J]. Southwest China Journal of Agricultural Sciences,2022,35(4):740-747. [司海丽,纪立东,刘菊莲,等. 有机肥施用量对玉米产量、土壤养分及生物活性的影响[J]. 西南农业学报,2022,35(4):740-747.]
    [14] Hu J L,Lin X G,Wang J H,et al. Microbial functional diversity,metabolic quotient,and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer[J]. Journal of Soils and Sediments,2011,11:271-280.
    [15] Wu Q C,Zhang C Z,Zhang J B,et al. Effects of different fertilization and straw returning on soil organic matter and its components in fluvo-aquic soil[J]. Soils,2015,47(6):1034-1039. [吴其聪,张丛志,张佳宝,等. 不同施肥及秸秆还田对潮土有机质及其组分的影响[J]. 土壤,2015,47(6):1034-1039.]
    [16] Garlic Growers Association of Jinxiang County. Technical regulation of Jinxiang garlic cultivation:T/JXDSZZ002- 2020[S],2020. [金乡县大蒜种植协会,金乡大蒜种植技术规程:T/JXDSZZ002-2020 [S],2020.]
    [17] Lu R K. Analytical methods for soil and agro- chemistry[M]. Beijing:China Agricultural Science and Technology Press,2000. [鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.]
    [18] Jones D L,Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen(DON)and dissolved organic carbon(DOC)in soil[J]. Soil Biology and Biochemistry,2006,38:991-999.
    [19] Zhou P,Zhang X H,Pan G X. Effect of long-term fertilization on content of total and particulate organic carbon and their depth distribution of a paddy soil:An example of huangnitu from the Tai Lake region,China[J]. Plant Nutrition and Fertilizer Science,2006,12(6):765-771. [周萍,张旭辉,潘根兴. 长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J]. 植物营养与肥料学报,2006,12(6):765-771.]
    [20] Wright S F,Upadhyaya A. A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil,1998,198(1):97-107.
    [21] van Bavel C H M. Mean weight-diameter of soil aggregates as a statistical index of aggregation[J]. Soil Science Society of America Journal,1950,14:20-23.
    [22] Mazurak A P. Effect of gaseous phase on water -stable synthetic aggregates[J]. Soil Science,1950,69(2):135-148.
    [23] Yang P L,Luo Y P,Shi Y C. Fractal characteristics of soil characterized by weight distribution of particle size[J]. Chinese Science Bulletin,1993,38(20):1896-1899. [杨培岭,罗远培,石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报,1993,38(20):1896-1899.]
    [24] Shirazi M A,Boersma L. A unifying quantitative analysis of soil texture[J]. Soil Science Society of America Journal,1984,48(1):142-147.
    [25] Wei T Q,Hong H Y,Zhou H M,et al. Optimization of the fertilizer performances in long-term garlic cropping soils[J]. Pedoshpere,2024,34(3):577-589.
    [26] Yu J Y,Liu Y H,Wang Z Y,et al. The cropping obstacle of garlic was associated with changes in soil physicochemical properties,enzymatic activities and bacterial and fungal communities[J]. Frontiers in Microbiology,2022,13:828196.
    [27] Liang L,Ma C,Zhang R,et al. Improvement of soil nutrient availability and enzyme activities in rainfed wheat field by combined application of organic and inorganic fertilizers [J]. Journal of Plant Nutrition and Fertilizer,2019,25(4):544-554. [梁路,马臣,张然,等. 有机无机肥配施提高旱地麦田土壤养分有效性及酶活性[J]. 植物营养与肥料学报,2019,25(4):544-554.]
    [28] Liu M Y,Zhang K M,Mao W,et al. Effects of long-term substitution of inorganic fertilizers with organic fertilizers on rice and wheat yields and soil fertility[J]. Acta Agriculturae Boreali-Sinica,2021,36(3):133-141. [刘明月,张凯鸣,毛伟,等. 有机肥长期等氮替代无机肥对稻麦产量及土壤肥力的影响[J]. 华北农学报,2021,36(3):133-141.]
    [29] Shao H Y,Li Z Y,Liu D,et al. Effects of manure application rates on the soil carbon fractions and aggregate stability [J]. Environmental Science,2019,40(10):4691-4699. [邵慧芸,李紫玥,刘丹,等. 有机肥施用量对土壤有机碳组分和团聚体稳定性的影响[J]. 环境科学,2019,40(10):4691-4699.]
    [30] Yang Z Y,Que H,Zhu X Z,et al. Impacts of arbuscular mycorrhizal fungi on glomalin content in soils contaminated with phenanthrene[J]. Journal of Agro- Environment Science,2016,35(7):1338-1343. [杨振亚,阙弘,朱雪竹,等. 几种丛枝菌根真菌对菲污染土壤中球囊霉素含量的影响[J]. 农业环境科学学报,2016,35(7):1338-1343.]
    [31] Xia Z T,Zhao J X,Li Y M,et al. Effect of annual rotation and fallow pattern on the soil glomalin and aggregate stability[J]. Journal of Agro-Environment Science,2022,41(1):99-106. [夏梓泰,赵吉霞,李永梅,等. 周年轮作休耕模式对土壤球囊霉素和团聚体稳定性的影响[J]. 农业环境科学学报,2022,41(1):99-106.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

洪华阳,魏天齐,周红梅,任艳云,马龙传,苏彦华,张焕朝.修复连作大蒜土壤生产力衰退的有机质补偿方案与初步机理[J].土壤学报,2024,61(5):1386-1397. DOI:10.11766/trxb202303140101 HONG Huayang, WEI Tianqi, ZHOU Hongmei, REN Yanyun, MA Longchuan, SU Yanhua, ZHANG Huanchao. Organic Matter Compensation Scheme and Preliminary Mechanism for Remediation of Soil Productivity Decline in Continuous Cropping Garlic[J]. Acta Pedologica Sinica,2024,61(5):1386-1397.

复制
分享
文章指标
  • 点击次数:111
  • 下载次数: 1406
  • HTML阅读次数: 528
  • 引用次数: 0
历史
  • 收稿日期:2023-03-14
  • 最后修改日期:2023-06-12
  • 录用日期:2023-08-15
  • 在线发布日期: 2023-08-15
文章二维码