秸秆碳类型对土壤团聚体真菌群落特征的影响
作者:
中图分类号:

S154

基金项目:

山东省自然科学基金项目(ZR2021QD036)、中国农业科学院科技创新工程(ASTIP-TRICO3)和国家自然科学基金项目(32301969)共同资助


Effects of Straw Carbon Types on Fungal Community Characteristics of Soil Aggregates
Author:
Fund Project:

Supported by the Natural Science Foundation of Shandong Province (No.ZR2021QD036) and the Agricultural Science Technology Innovation Program (No.ASTIP-TRICO3), the National Natural Science Foundation of China (No.32301969)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    真菌的分解作用是驱动土壤养分循环和能量流动的主要动力,然而在团聚体尺度上,真菌群落对不同类型秸秆碳输入的响应特征及关键环境因子尚不明确。以玉米秸秆为原料,设置常规粉碎秸秆(RS)、腐熟秸秆(DS)和秸秆生物质炭(BC)3种秸秆碳类型的等碳量还田处理,并以不施秸秆(CK)为对照,探讨秸秆碳类型对土壤大团聚体(> 0.25 mm)和微团聚体(< 0.25 mm)中真菌多样性、真菌群落组成及分布、菌群内部相互作用关系的影响,并进一步探究影响土壤真菌群落变化的关键环境因子。2年田间试验结果表明,RS处理显著降低了< 0.25 mm微团聚体和> 0.25 mm大团聚体中真菌的 α 多样性(P < 0.05)。各处理的优势菌门前三位的为子囊菌门(Ascomycota)、被孢霉门(Mortierellomycota)、担子菌门(Basidiomycota),优势菌属前三位的为小不整球壳属(Plectosphaerella)、毛壳菌属(Chaetomium)、被孢霉属(Mortierella)。与不同团聚体粒级相比,秸秆碳处理显著引起了真菌群落结构的分异(P < 0.01),其中RS处理的真菌群落结构显著区分于其他处理。共现网络分析表明,BC处理提高了纳入真菌共现网络的节点数量(10.08%)和模块性(5.55%),DS处理提高了纳入共现网络的节点(11.17%)、边的数量(32.57%)和节点平均度(19.27%),均提高了土壤团聚体真菌群落结构的稳定性。Mantel test分析发现,铵态氮(AN)和pH是影响土壤团聚体真菌群落结构的关键环境因子,且RS处理的真菌群落受土壤环境因子影响最大。真菌群落功能预测分析表明,3种秸秆碳的输入均能降低病原型真菌的相对丰度,减少农田土传病害的发生。综上所述,短期内秸秆还田,不同土壤团聚体真菌更易受秸秆碳类型的影响而产生分异,添加腐熟秸秆和秸秆生物质炭短期内能提升土壤AN含量,进而提高真菌网络的复杂性,促进真菌群落稳定,因此在实际生产中应考虑适当增加腐熟态或炭化态秸秆碳投入以促进土壤生态功能稳定。

    Abstract:

    【Objective】 Fungal decomposition plays a key role as the primary driving force of the nutrient cycling and energy flow in the soil. However, the response characteristics of fungal communities to different types of straw carbon inputs and the key environmental factors at the aggregate scale are not yet clear.【Method】 In this study, corn straw was used as the experimental, and three treatments were set according to the equal carbon content of straw returning: regular crushed straw (RS), decomposed straw (DS) and straw biochar (BC). A control group without straw application (CK) was also set up. The study aimed to investigate the effects of different carbon types from straws on the diversity, composition, and distribution of fungi in soil macroaggregates (>0.25 mm) and microaggregates (<0.25 mm), as well as the interactions within fungal communities. Furthermore, key environmental factors influencing the variation of soil fungal communities were explored.【Result】 The results of a 2-year field experiment indicate that RS treatment significantly reduced fungal α diversity (P<0.05) in microaggregates (<0.25 mm) and macroaggregates (>0.25 mm). The top three dominant phyla in each treatment were Ascomycota, Mortierellomycota, and Basidiomycota, while the top three dominant genera were Plectosphaerella, Chaetomium, and Mortierella. Compared to different aggregate size fractions, the treatment with straw carbon significantly induced differentiation in fungal community structure (P<0.01), with notably distinct fungal community structure observed in the RS treatment compared to the other treatments. Also, analysis of fungal co-occurrence network showed that BC treatment increased the number of nodes (10.08%) and modularity (5.55%) while DS treatment increased the number of nodes (11.17%), the number of edges (32.57%) and the average degree of nodes (19.27%) included in the co-occurrence network, and all of which improved the structural stability of the fungal network of soil aggregates. The Mantel test analysis found that ammonium nitrogen (AN) and pH were the key environmental factors affecting the fungal community structure of soil aggregates, with the fungal community in the RS treatment being the most influenced by soil environmental factors. The prediction analysis of fungal community function showed that the input of straw carbon could reduce the relative abundance of pathogenic fungi and reduce the occurrence of soil-borne diseases in farmland. 【Conclusion】 Our results reveal that in the short term, different soil aggregates of fungi are more susceptible to the influence of straw carbon types, leading to differentiation. The addition of decomposed straw and straw biochar can increase soil AN content, thereby increasing the complexity of the fungal network, thus, promoting fungal community stability. Therefore, for practical applications, it is advisable to consider appropriately increasing the input of decomposed straw or straw biochar to promote the stability of soil ecological functions.

    参考文献
    [1] Cong P,Wang J,Dong J X,et al. Effects and analysis of straw returning on subsoil microbial community structure in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(1):109-118.[丛萍,王婧,董建新,等. 秸秆还田对黑土亚表层微生物群落结构的影响特征及原因分析[J]. 农业工程学报,2020,36(1):109-118.]
    [2] He J,Dong J X,Cong P,et al. Rapid improvement of maize straw carbon form on soil organic carbon and comprehensive fertility in tobacco planting soil[J]. Acta Agriculturae Boreali-Sinica,2022,37(2):132-141.[何京,董建新,丛萍,等. 玉米秸秆碳形态对植烟土壤有机碳及土壤综合肥力的快速提升效应[J]. 华北农学报,2022,37(2):132-141.]
    [3] Ma N,Chen Z W,Zhang Q. Effects of different types of straw returning on soil organic carbon contents and enzyme activity:A review[J]. Jiangsu Agricultural Sciences,2021,49(3):53-57.[马南,陈智文,张清. 不同类型秸秆还田对土壤有机碳及酶活性的影响综述[J]. 江苏农业科学,2021,49(3):53-57.]
    [4] Sa R L,Yang H S,Tai J C,et al. Effect of straw maturing agents on fungal diversity in soil with different textures under returned straw conditions[J]. Chinese Journal of Eco-Agriculture,2020,28(7):1061-1071.[萨如拉,杨恒山,邰继承,等. 秸秆还田条件下腐熟剂对不同质地土壤真菌多样性的影响[J]. 中国生态农业学报,2020,28(7):1061-1071.]
    [5] Dilly O,Munch J C. Ratios between estimates of microbial biomass content and microbial activity in soils[J]. Biology and Fertility of Soils,1998,27(4):374-379.
    [6] Gil S V,Meriles J,Conforto C,et al. Response of soil microbial communities to different management practices in surface soils of a soybean agroecosystem in Argentina[J]. European Journal of Soil Biology,2011,47(1):55-60.
    [7] Zhang H,Lü J L,Cao Y F,et al. Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica,2014,51(4):743-752.[张红,吕家珑,曹莹菲,等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报,2014,51(4):743-752.]
    [8] Li P,Li Y C,Shi J L,et al. Rice straw return of different decomposition days altered soil fungal community structure[J]. Acta Ecologica Sinica,2017,37(13):4309-4317.[李鹏,李永春,史加亮,等. 水稻秸秆还田时间对土壤真菌群落结构的影响[J]. 生态学报,2017,37(13):4309-4317.]
    [9] Bardgett R D,Frankland J C,Whittaker J B. The effects of agricultural management on the soil biota of some upland grasslands[J]. Agriculture,Ecosystems & Environment,1993,45(1/2):25-45.
    [10] Blagodatskaya Е,Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:Critical review[J]. Biology and Fertility of Soils,2008,45(2):115-131.
    [11] Ma Z M,Lü W G,Pei Y N,et al. Effect of straw returning with decomposing inoculants to soil physico-chemical properties and the abundance of bacteria and fungi community[J]. Chinese Journal of Soil Science,2023,54(4):889-896.[马志梅,吕卫光,裴亚楠,等. 秸秆还田配施促腐菌剂对稻田土壤理化性质与微生物数量的影响[J]. 土壤通报,2023,54(4):889-896.]
    [12] Chang F J,Zhang G Y,Zhang L P,et al. Effects of Biochar Application on the structure and function of fungi community in continuous cropping watermelon soil[J]. Environmental Science,2024,45(6):3553-3561.[常芳娟,张贵云,张丽萍,等. 生物炭对西瓜连作土壤真菌群落结构和功能类群的影响[J]. 环境科学,2024,45(6):3553-3561.]
    [13] Li N,Han X Z,You M Y,et al. Research review on soil aggregates and microbes[J]. Ecology and Environmental Sciences,2013,22(9):1625-1632.[李娜,韩晓增,尤孟阳,等. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报,2013,22(9):1625-1632.]
    [14] Zhao Y J,Liu X J,Wu Y,et al. Effects of Medicago sativa-Triticale wittmack intercropping system on rhizosphere soil nutrients and bacterial community in semi-arid region of Northwest China[J]. Chinese Journal of Applied Ecology,2020,31(5):1645-1652.[赵雅姣,刘晓静,吴勇,等. 西北半干旱区紫花苜蓿-小黑麦间作对根际土壤养分和细菌群落的影响[J]. 应用生态学报,2020,31(5):1645-1652.]
    [15] Yang J F,Li Y M,Li C P,et al. Soybean-corn intercropping increases fungal community structure and diversity in red soil aggregates[J]. Journal of Plant Nutrition and Fertilizers,2023,29(5):889-899.[杨继芬,李永梅,李春培,等. 大豆玉米间作提高红壤团聚体中真菌群落结构和多样性[J]. 植物营养与肥料学报,2023,29(5):889-899.]
    [16] Dong J X,Cong P,Liu N,et al. Effects of deep straw incorporation on subsoil physical properties and aggregate distribution in black soil[J]. Acta Pedologica Sinica,2021,58(4):921-934.[董建新,丛萍,刘娜,等. 秸秆深还对黑土亚耕层土壤物理性状及团聚体分布特征的影响[J]. 土壤学报,2021,58(4):921-934.]
    [17] Cong P. Fertilization effect and mechanism of subsoil under high dosage straw returning in black soil of northeast china[D].Beijing:Chinese Academy of Agricultural Sciences,2019.[丛萍. 秸秆高量还田下东北黑土亚耕层的培肥效应与机制[D]. 北京:中国农业科学院,2019.]
    [18] Zheng J Y,Wang L,Zhao J S,et al. Forty-year-old orchards promote carbon storage by changing aggregate-associated enzyme activities and microbial communities[J]. Catena,2022,213:106195.
    [19] Lu R K. Analytical methods for soil and agrochemistry[M]. Beijing:China Agricultural Science and technology Press,2000.[鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000.]
    [20] Wang Y F,Chen P,Wang F H,et al. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization[J]. Environment International,2022,161:107133.
    [21] Huang Q,Wang J L,Wang C,et al. The 19-years inorganic fertilization increased bacterial diversity and altered bacterial community composition and potential functions in a paddy soil[J]. Applied Soil Ecology,2019,144:60-67.
    [22] Pankhurst C E,Ophel-Keller K,Doube B M,et al. Biodiversity of soil microbial communities in agricultural systems[J]. Biodiversity & Conservation,1996,5(2):197-209.
    [23] Yang H S,Li Y F,Zhai S L,et al. Long term ditch-buried straw return affects soil fungal community structure and carbon-degrading enzymatic activities in a rice-wheat rotation system[J]. Applied Soil Ecology,2020,155:103660.
    [24] Zhao S C,Qiu S J,Xu X P,et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils[J]. Applied Soil Ecology,2019,138:123-133.
    [25] Cai X B,Qian C,Zhang Y,et al. Microbial characteristics of straw-amended degraded soils in central Tibet and its effect on soil fertility[J]. Chinese Journal of Applied Ecology,2004,15(3):463-468.[蔡晓布,钱成,张元,等. 西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J]. 应用生态学报,2004,15(3):463-468.]
    [26] Mathew R P,Feng Y C,Githinji L,et al. Impact of No-tillage and conventional tillage systems on soil microbial communities[J]. Applied and Environmental Soil Science,2012,2012:548620.
    [27] Qiu C,Han X Z,Lu X C,et al. Effects of corn straw return on functional diversity of microbial community in black soil[J]. Chinese Journal of Ecology,2022,41(2):287-293.[邱琛,韩晓增,陆欣春,等. 玉米秸秆还田对黑土微生物群落功能多样性的影响[J]. 生态学杂志,2022,41(2):287-293.]
    [28] Lü K Y,Zhou L P,Kang J H,et al. Effects of maize straw returning on soil fungal community under different tillage methods[J]. Soil and Fertilizer Sciences in China,2022(8):112-122.[吕开源,周立萍,康建宏,等. 不同耕作方式下玉米秸秆还田对土壤真菌群落的影响[J]. 中国土壤与肥料,2022(8):112-122.]
    [29] Meng Q Y,Yang X H,Yao L L,et al. Effects of combined application of straw and microbial fertilizer on soil aggregates and fungal community diversity of rice field saline alkali soil[J]. Heilongjiang Agricultural Sciences,2022(8):25-30.[孟庆英,杨晓贺,姚亮亮,等. 秸秆与微生物菌肥配施对盐碱稻田土壤团聚体及真菌群落多样性的影响[J]. 黑龙江农业科学,2022(8):25-30.]
    [30] Kõljalg U,Nilsson R H,Abarenkov K,et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology,2013,22(21):5271-5277.
    [31] Yan H T,Yin Q Y,Ding S S,et al. Effect of biochar amendment on physicochemical properties and fungal community structures of cinnamon soil[J]. Environmental Science,2018,39(5):2412-2419.[阎海涛,殷全玉,丁松爽,等. 生物炭对褐土理化特性及真菌群落结构的影响[J]. 环境科学,2018,39(5):2412-2419.]
    [32] Ma A Z,Zhuang X L,Wu J M,et al. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J]. PLoS One,2013,8(6):e66146.
    [33] Ma L,Li Y,Wei J L,et al. Effects of long-term straw returning on fungal community,enzyme activity and wheat yield in Fluvo-aquic soil[J]. Environmental Science,2022,43(10):4755-4764.[马垒,李燕,魏建林,等. 长期秸秆还田对潮土真菌群落、酶活性和小麦产量的影响[J]. 环境科学,2022,43(10):4755-4764.]
    [34] Liu M H,Liu Y,Ren Y,et al. Soil fungi co-occurrence network and its relationship with soil factors of Pinus sylvestris var. mongolica plantation in the Horqin Desert[J]. Acta Ecologica Sinica,2023,43(23):9912-9924.[刘明慧,柳叶,任悦,等. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系[J]. 生态学报,2023,43(23):9912-9924.]
    [35] Wang X Y,Bian Q,Jiang Y J,et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes[J]. Soil Biology and Biochemistry,2021,153:108062.
    [36] Hu A,Meng F F,Tanentzap A J,et al. Dark matter enhances interactions within both microbes and dissolved organic matter under global change[J]. Environmental Science & Technology,2023,57(1):761-769.
    [37] Cheng Y Y,Jin Z J,Wang X T,et al. Effect of land-use on soil fungal community structure and associated functional group in Huixian Karst wetland[J]. Environmental Science,2020,41(9):4294-4304.[程跃扬,靳振江,王晓彤,等. 土地利用方式对会仙岩溶湿地土壤真菌群落和功能类群的影响[J]. 环境科学,2020,41(9):4294-4304.]
    [38] Xiong D,Ou J,Li L P,et al. Community composition and ecological function analysis of endophytic fungi in the roots of Rhododendron simsii in Pinus massoniana forest in central Guizhou[J]. Acta Ecologica Sinica,2020,40(4):1228-1239.[熊丹,欧静,李林盼,等. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能[J]. 生态学报,2020,40(4):1228-1239.]
    [39] Lehmann J,Rillig M C,Thies J,et al. Biochar effects on soil biota-A review[J]. Soil Biology and Biochemistry,2011,43(9):1812-1836.
    [40] Bai D M,Duo L A,Liu T. Effects of waste application on the soil physical and chemical properties and development of turf grass[J]. Tianjin Agricultural Sciences,2019,25(7):73-78.[白冬梅,多立安,刘特. 添加废弃物补充基质对草皮生产土壤理化指标及草坪草生长发育的影响[J]. 天津农业科学,2019,25(7):73-78.]
    [41] Wen M J,Wang C B,Huo L,et al. Effects of subsoiling and straw returning on soil physical properties and maize production in Yellow River irrigation area of Gansu,China[J]. Chinese Journal of Applied Ecology,2019,30(1):224-232.[温美娟,王成宝,霍琳,等. 深松和秸秆还田对甘肃引黄灌区土壤物理性状和玉米生产的影响[J]. 应用生态学报,2019,30(1):224-232.]
    [42] Ge X G,Zhou B Z,Xiao W F,et al. Priming effect of biochar addition on soil carbon emission:A review[J]. Ecology and Environmental Sciences,2016,25(2):339-345.[葛晓改,周本智,肖文发,等. 生物质炭输入对土壤碳排放的激发效应研究进展[J]. 生态环境学报,2016,25(2):339-345.]
    [43] Liu X X,Yang D. Effects of straw return on soil properties,yield and quality of radish(Raphanus sativus L.)[J]. Soils,2023,55(4):771-778.[刘晓霞,杨东. 秸秆还田方式对土壤质量和萝卜产量及品质的影响[J]. 土壤,2023,55(4):771-778.]
    [44] Liu W B,Tian W B,Chen L,et al. Effects of different straw returning methods on soil enzyme activity and maize yield[J]. Soil and Fertilizer Sciences in China,2019(5):25-29.[刘玮斌,田文博,陈龙,等. 不同秸秆还田方式对土壤酶活性和玉米产量的影响[J]. 中国土壤与肥料,2019(5):25-29.]
    [45] Yuan Y H,Rui S Y,Zhou J H,et al. Effects of biochar and calcium peroxide on soil enzyme activities and soil microbial community structure in upland red soil[J]. Soil and Fertilizer Sciences in China,2019(1):93-101.[袁颖红,芮绍云,周际海,等. 生物质炭及过氧化钙对旱地红壤酶活性和微生物群落结构的影响[J]. 中国土壤与肥料,2019(1):93-101.]
    [46] Fowles M. Black carbon sequestration as an alternative to bioenergy[J]. Biomass and Bioenergy,2007,31(6):426-432.
    [47] Wang W H,Jiang Z H,Zhang J,et al. Effects of biochar on enzyme activity and yield of soybean in rhizosphere soil[J]. Soil and Fertilizer Sciences in China,2023(6):147-153.[王文慧,蒋志慧,张纪,等. 生物炭对大豆根际土壤酶活性及产量的影响[J]. 中国土壤与肥料,2023(6):147-153.]
    [48] Li M,Gao X H. Community structure and driving factors for rhizosphere ectomycorrhizal fungi of Betula platyphylla in Daqing Mountain[J]. Chinese Journal of Ecology,2021,40(5):1244-1252.[李敏,高秀宏. 大青山白桦根围外生菌根真菌群落结构及其驱动因素[J]. 生态学杂志,2021,40(5):1244-1252.]
    [49] Ma B B,Huang R L,Zhang N,et al. Effect of straw-derived biochar on molecular ecological network between bacterial and fungal communities in rhizosphere soil[J]. Acta Pedologica Sinica,2019,56(4):964-974.[马泊泊,黄瑞林,张娜,等. 秸秆生物质炭对根际土壤细菌-真菌群落分子生态网络的影响[J]. 土壤学报,2019,56(4):964-974.]
    [50] Philippot L,Chenu C,Kappler A,et al. The interplay between microbial communities and soil properties[J]. Nature Reviews Microbiology,2024,22(4):226-239.
    [51] Wang J,Zhang H P,Su X,et al. Microbial diversity in rhizosphere soil of Anemone altaica[J]. Guihaia,2023,43(8):1467-1477.[王晶,张会萍,苏晓,等. 阿尔泰银莲花根际土壤微生物多样性研究[J]. 广西植物,2023,43(8):1467-1477.]
    [52] Shi W Y. Effects of returining of green manure-straw cooperative on soil microbial community and functional diversity in continuous cropping cotton field[D]. Handan,Hebei:Hebei University of Engineering,2021.[史文宇. 绿肥-秸秆协同还田对连作棉田土壤微生物群落和功能多样性的影响[D]. 河北邯郸:河北工程大学,2021.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王萍,董建新,夏龙龙,何京,况帅,徐艳丽,丛萍.秸秆碳类型对土壤团聚体真菌群落特征的影响[J].土壤学报,2024,61(6):1714-1728. DOI:10.11766/trxb202309250398 WANG Ping, DONG Jianxin, XIA Longlong, HE Jing, KUANG Shuai, Xu Yanli, CONG Ping. Effects of Straw Carbon Types on Fungal Community Characteristics of Soil Aggregates[J]. Acta Pedologica Sinica,2024,61(6):1714-1728.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-25
  • 最后修改日期:2024-04-19
  • 录用日期:2024-06-11
  • 在线发布日期: 2024-06-20
文章二维码