冬季积雪变化背景下AM真菌对荒漠土壤胞外酶活性的影响
作者:
中图分类号:

S158

基金项目:

国家自然科学基金项目(32101304,32160281)、绿洲生态重点实验室开放课题项目(2021D04006)资助


Effects of AM Fungi on Soil Extracellular Enzyme Activities under the Background of Winter Snow Changes in a Desert Ecosystem
Author:
Fund Project:

Supported by the National Natural Science Foundation of China (Nos.32101304, 32160281) and the Open Project of Oasis Ecology Key Laboratory (No.2021D04006)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    土壤胞外酶作为土壤生物化学反应的催化剂,直接驱动了土壤物质循环和能量流动过程,土壤胞外酶活性对冬季积雪变化响应敏感,对于缺水且养分贫瘠的荒漠生态系统养分循环过程影响显著。为研究暖湿趋势下古尔班通古特沙漠冬季积雪变化和丛枝菌根(Arbuscular mycorrhiza,AM)真菌对土壤酶活性的影响,设置冬季积雪变化和原位抑制AM真菌活性的双因素长期定位试验,采用裂区随机区组试验设计,主区为对照(增水40 mm,W)和AM抑制处理(增水40 mm同时添加苯菌灵,BW),副区为积雪增加100%(+S)、自然降雪(CK)和积雪减少100%(-S)。分土层采集土壤样品,测定不同处理下土壤理化性质及土壤碳、氮和磷循环相关酶活性,分析冬季积雪变化背景下AM真菌对荒漠土壤酶活性和微生物代谢限制的影响。结果表明:(1)AM真菌提高了植物地上部净初级生产力;降低土壤中速效磷和铵态氮含量,增加有机碳含量;在积雪增加和自然降雪基础上,AM真菌降低了土壤中与碳、氮和磷循环相关的酶活性;积雪减少基础上,AM真菌增加了碳和氮循环相关酶活性。(2)通过矢量分析得出,荒漠土壤微生物活性受土壤碳和磷的限制,在积雪增加和自然降雪基础上,AM真菌降低了土壤中微生物碳限制,在积雪减少基础上,AM真菌对土壤微生物碳和磷限制影响无一致性规律。综上所述,冬季积雪变化背景下,AM真菌对促进荒漠土壤速效磷和铵态氮吸收,提高土壤碳和氮循环相关酶活性,缓解土壤微生物碳限制等方面均起到重要作用。

    Abstract:

    【Objective】 Soil extracellular enzymes, as the catalysts of soil biochemical reactions, directly drive soil element cycling and energy flow processes and play indispensable roles in the biogeochemical cycling of carbon, nitrogen, and phosphorus in desert ecosystems. Winter snow is a key climatic factor regulating soil element cycling. Soil extracellular enzyme activities respond sensitively to the changes in winter snow cover and the relatively stable hydrothermal conditions highly alter soil extracellular enzyme activities under the winter snow cover. Thus, changes in the winter snow cover will trigger fluctuations in soil extracellular enzyme activities, significantly influencing the nutrient cycling processes in desert ecosystems which are water-scarce and nutrient-poor.【Method】 In order to investigate the effects of winter snow cover changes and arbuscular mycorrhiza (AM) fungi on soil enzyme activities in the Gurbantunggut Desert under the background of a “warm and humid” trend, we conducted a long-term field experiment simulating winter snow cover changes and in situ inhibition of AM fungal activities with a split-area randomized block experimental design. The following treatments were adopted; for the primary zone, the control (40 mm water increase, W) and an AM-inhibition treatment (40 mm water increase with the addition of benomyl, BW); for the subplot zone, including three levels, 100 % snow cover increase (+S), natural snowfall (CK), and 100 % snow cover decrease (-S). Soil samples were collected from 0-10 and 10-20 cm soil layers, soil physicochemical properties, and soil enzyme activities which are related to soil carbon, nitrogen, and phosphorus cycling were determined to uncover the effects of AM fungi on soil enzyme activities and microbial metabolism limitation under the background of winter snow cover changes in the desert ecosystem.【Result】 (1) AM fungi significantly increased the aboveground net primary productivity of plant community, decreased the content of soil available phosphorus and ammonium nitrogen, but increased the content of soil organic carbon. The activities of soil enzymes related to soil carbon, nitrogen, and phosphorus cyclings were decreased under the natural snow cover and increased snow cover in the AM fungi treatments. In contrast, AM fungi treatments increased the activities of soil enzymes which are related to the soil carbon and nitrogen cyclings under decreased snow cover. (2) Based on the vector analyses, our results indicated that soil microbial activities were co-limited by soil carbon and phosphorus in desert ecosystems. Furthermore, we found that AM fungi decreased soil microbial carbon limitation under the natural snow cover and increased snow cover treatments, but there was no consistent pattern in the effects of AM fungi on soil microbial carbon and phosphorus limitation under the decreased snow cover treatment.【Conclusion】 AM fungi play an important role in promoting plant available phosphorus and ammonium nitrogen uptake, enhance soil enzyme activities which are related to soil carbon and nitrogen cyclings, and alleviate soil microbial carbon limitation in desert soils under the background of winter snow cover changes. Importantly, our results revealed the effects of winter snow cover changes and AM fungi on soil extracellular enzyme activities and soil microbial metabolism limitation. This contribution will provide a reference in the understanding of belowground ecological processes and feedbacks, and a scientific basis for the protection and ecological restoration constructions for desert ecosystems in the future.

    参考文献
    相似文献
    引证文献
引用本文

薛晖,杨榕,秦文昊,董倩倩,计占权,贾阳阳.冬季积雪变化背景下AM真菌对荒漠土壤胞外酶活性的影响[J].土壤学报,2025,62(1):285-296. DOI:10.11766/trxb202310300444 XUE Hui, YANG Rong, QIN Wenhao, DONG Qianqian, JI Zhanquan, JIA Yangyang. Effects of AM Fungi on Soil Extracellular Enzyme Activities under the Background of Winter Snow Changes in a Desert Ecosystem[J]. Acta Pedologica Sinica,2025,62(1):285-296.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-30
  • 最后修改日期:2024-07-02
  • 录用日期:2024-08-01
  • 在线发布日期: 2024-08-16
文章二维码