聚苯乙烯对饱和多孔介质中土壤胶体与铜共运移的影响及机制
作者:
中图分类号:

X53

基金项目:

山东省自然科学基金项目(ZR2023MD043)和国家自然科学基金项目(41807010)资助


Effect and Mechanism of Polystyrene on the Co-transport of Copper and Soil Colloids in Saturated Porous Media
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    土壤环境中普遍存在的胶体物质深刻地影响着污染物在土壤和地下水中迁移转化,而微塑料作为一种新兴的污染物,其对胶体及胶体协同污染物运移的影响尚不明确。为此,以聚苯乙烯(Polystyrene,PS)微塑料为研究对象,采用室内砂柱实验,结合沉降实验及傅里叶红外光谱(Fourier transform infrared spectroscopy,FTIR)等手段,探讨微塑料对土壤胶体、铜(Cu2+)及其共运移的影响机制。结果表明,PS通过与土壤胶体异质聚集、竞争多孔介质表面沉积位点及空间位阻作用,促进了土壤胶体的迁移,且在Cu2+存在时,促进作用更显著。与土壤胶体相比,低浓度低吸附性的PS对Cu2+迁移的影响不明显,83.47%的Cu2+以溶解态的形式迁移,而土壤胶体作用下35.25%的Cu2+以胶体态的形式迁移。PS虽然增强了土壤胶体的移动性,但是降低了其对Cu2+的吸附,促进了溶解态Cu2+的迁移,对总Cu的出流浓度没有显著影响。此外,PS的移动性也受到土壤胶体和Cu2+的影响。总体而言,土壤环境中的微塑料不仅直接与Cu2+相互作用,而且还可以改变土壤胶体的性质,胶体性质的改变可能是微塑料影响Cu环境行为的主要原因。

    Abstract:

    【Objective】 The ubiquitous colloidal substances in the environment profoundly affect the transport and transformation of pollutants in soil and groundwater. The impact of microplastics, as an emerging pollutant, on the transport of colloids and colloid-associated pollutants is still unclear. 【Method】 Therefore, column experiments were conducted in saturated quartz sand, with polystyrene (PS) microplastics as the research object. By combining with sedimentation experiments, Fourier infrared spectroscopy (FTIR), and other methods, the influencing mechanisms of microplastics on soil colloid, copper (Cu2+), and their co-transport were investigated. 【Result】 The results showed that PS facilitated the transport of soil colloids through mechanisms involving heterogeneous aggregation with soil colloids, competition for surface sites on quartz sand, and steric hindrance. This promotional effect was more pronounced in the presence of Cu2+. In comparison to soil colloid, the effect of PS on Cu2+ migration was not obvious due to its low concentration as well as low adsorption capacity. In the presence of PS, 83.47% of Cu2+ was transported in dissolved form, while 35.25% of Cu2+ was transported in colloidal form under the effluence of soil colloid. PS enhanced the mobility of soil colloids, but it concurrently reduced the adsorption of Cu2+ and facilitated the transport of dissolved Cu2+ compared to the scenario with only soil colloids. However, PS did not have a significant impact on the effluent concentration of total Cu. Furthermore, the mobility of PS was also influenced by soil colloids and Cu2+. 【Conclusion】 In general, microplastics in the soil environment not only directly interact with Cu2+, but also alter the properties of soil colloids. Changes in colloidal properties may be the primary reason for the impact of microplastics on the environmental behavior of Cu.

    参考文献
    [1] Fadare O O,Wan B,Liu K Y,et al. Eco-Corona vs protein Corona:Effects of humic substances on Corona formation and nanoplastic particle toxicity in Daphnia magna[J]. Environmental Science & Technology,2020,54(13):8001-8009.
    [2] Schultz C L,Bart S,Lahive E,et al. What Is on the Outside Matters-Surface Charge and Dissolve Organic Matter Association Affect the Toxicity and Physiological Mode of Action of Polystyrene Nanoplastics to C. elegans[J]. Environmental Science & Technology,2021,55(9):6065-6075.
    [3] Cortés-Arriagada D. Elucidating the co-transport of bisphenol A with polyethylene terephthalate(PET)nanoplastics:A theoretical study of the adsorption mechanism[J]. Environmental Pollution,2021,270:116192.
    [4] Zhang C,Yu Z G,Zeng G M,et al. Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd[J]. Chemical Engineering Journal,2016,284:247-259.
    [5] Hu P J,Du Y P,Xia B,et al. Bibliometric analysis of research on soil colloids affecting the behavior of heavy metals based on Web of Science[J]. Acta Pedologica Sinica,2024,61(2):445-455.[胡鹏杰,杜彦锫,夏冰,等. 基于Web of Science对土壤胶体影响重金属行为研究的计量分析[J]. 土壤学报,2024,61(2):445-455. ]
    [6] Alimi O S,Farner J M,Tufenkji N. Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments[J]. Water Research,2021,189:116533.
    [7] Wang L W,O’Connor D,Rinklebe J,et al. Biochar aging:Mechanisms,physicochemical changes,assessment,and implications for field applications[J]. Environmental Science & Technology,2020,54(23):14797-14814.
    [8] Chen Y L,Sun K,Han L F,et al. Separation,identification,and quantification methods in soil microplastics analysis:A review[J]. Acta Pedologica Sinica,2022,59(2):364-380. [陈雅兰,孙可,韩兰芳,等. 土壤中微塑料的分离及检测方法研究进展[J]. 土壤学报,2022,59(2):364-380.]
    [9] Molnar I L,Johnson W P,Gerhard J I,et al. Predicting colloid transport through saturated porous media:A critical review[J]. Water Resources Research,2015,51(9):6804-6845.
    [10] Alimi O S,Farner Budarz J,Hernandez L M,et al. Microplastics and nanoplastics in aquatic environments:Aggregation,deposition,and enhanced contaminant transport[J]. Environmental Science & Technology,2018,52(4):1704-1724.
    [11] Cai L,Peng S N,Wu D,et al. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand[J]. Environmental Pollution,2016,208(Pt B):637-644.
    [12] Hüffer T,Metzelder F,Sigmund G,et al. Polyethylene microplastics influence the transport of organic contaminants in soil[J]. Science of the Total Environment,2019,657:242-247.
    [13] Camacho M,Herrera A,Gómez M,et al. Organic pollutants in marine plastic debris from Canary Islands beaches[J]. Science of the Total Environment,2019,662:22-31.
    [14] Li J,Zhang K N,Zhang H. Adsorption of antibiotics on microplastics[J]. Environmental Pollution,2018,237:460-467.
    [15] Zou J Y,Liu X P,Zhang D M,et al. Adsorption of three bivalent metals by four chemical distinct microplastics[J]. Chemosphere,2020,248:126064.
    [16] Li S S,Chen S B,Wang M,et al. Redistribution of iron oxides in aggregates induced by pe + pH variation alters Cd availability in paddy soils[J]. Science of the Total Environment,2021,752:142164.
    [17] Oriekhova O,Stoll S. Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter[J]. Environmental Science:Nano,2018,5(3):792-799.
    [18] Huang S Z,Liang Q W,Geng J J,et al. Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg(II)and adsorption mechanisms[J]. Materials Chemistry and Physics,2019,238:121919.
    [19] Tong M P,Li T F,Li M,et al. Cotransport and deposition of biochar with different sized-plastic particles in saturated porous media[J]. Science of the Total Environment,2020,713:136387.
    [20] He L,Wu D,Rong H F,et al. Influence of nano- and microplastic particles on the transport and deposition behaviors of bacteria in quartz sand[J]. Environmental Science & Technology,2018,52(20):11555-11563.
    [21] Cai L,He L,Peng S N,et al. Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand[J]. Environmental Pollution,2019,253:351-357.
    [22] Zhang W,Dong Z Q,Huang R,et al. Cotransport of microplastics and fullerene in marine porous media[J]. China Environmental Science,2019,39(12):5063-5068. [张文,董志强,黄睿,等. 海洋多孔介质中微塑料和富勒烯的共迁移[J]. 中国环境科学,2019,39(12):5063-5068.]
    [23] Dong Z Q,Zhu L,Zhang W,et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand[J]. Environmental Pollution,2019,255(Pt 1):113177.
    [24] Li S C,Liu H,Gao R,et al. Aggregation kinetics of microplastics in aquatic environment:Complex roles of electrolytes,pH,and natural organic matter[J]. Environmental Pollution,2018,237:126-132.
    [25] Hou J,Xu X Y,Lan L,et al. Transport behavior of micro polyethylene particles in saturated quartz sand:Impacts of input concentration and physicochemical factors[J]. Environmental Pollution,2020,263(Pt B):114499.
    [26] Li M,He L,Zhang M Y,et al. Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand[J]. Environmental Science & Technology,2019,53(7):3547-3557.
    [27] Chen W P,Yang Y,Xie T,et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica,2018,55(2):261-272. [陈卫平,杨阳,谢天,等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报,2018,55(2):261-272.]
    [28] Shang E P,Xu E Q,Zhang H Q,et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China[J]. Environmental Science,2018,39(10):4670-4683. [尚二萍,许尔琪,张红旗,等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析[J]. 环境科学,2018,39(10):4670-4683.]
    [29] Mi Y Z,Liang J N,Zhou J,et al. Input and output balance of heavy metals(Cd,Cu,Pb)in arable soils in atmospheric deposition area of typical smelter[J]. Acta Pedologica Sinica,2024. doi:10.11766/ trxb202302180064[米雅竹,梁家妮,周俊,等. 典型冶炼厂大气沉降区农田耕层土壤重金属(Cd、Cu、Pb)输入输出平衡研究[J]. 土壤学报,2024.doi:10.11766/ trxb202302180064]
    [30] Li J,Lin Q,Xu S H. Desorption and migration characteristics of Cu/Cd composite contaminated soil under different pH/ionic strength[J]. Acta Pedologica Sinica,2023,60(4):1026-1034. [李静,林青,徐绍辉. 不同pH/离子强度时Cu/Cd复合污染土壤解吸和迁移特征[J].土壤学报,2023,60(4):1026-1034.]
    [31] Chang B K,Chen Y T,Cao G,et al. Effects of background ion types and concentrations on the co-transport of polystyrene microplastics/lead in saturated quartz sand[J]. China Environmental Science,2022,42(7):3193-3203. [常博焜,陈怡汀,曹钢,等. 背景离子类型和浓度对聚苯乙烯微塑料/铅在饱和石英砂中共运移的影响[J]. 中国环境科学,2022,42(7):3193-3203.]
    [32] Zhao W,Lin Q,Xu S H. Effect of colloidal particle on permeability of saturated porous media different in particle size[J]. Acta Pedologica Sinica,2020,57(2):336-346. [赵伟,林青,徐绍辉. 胶体颗粒对不同粒径饱和多孔介质渗透性的影响[J]. 土壤学报,2020,57(2):336-346.]
    [33] Pan Y,Zhang Y,Wang Y,et al. Effects of typical components of root exudates on the stability and transport of biochar colloids[J]. Acta Pedologica Sinica,2023,60(3):824-834. [潘岳,张雨,王洋,等. 根系分泌物典型组分对生物炭胶体稳定性和迁移能力的影响[J]. 土壤学报,2023,60(3):824-834.]
    [34] Cheng D,Liao P,Yuan S H. Effects of ionic strength and cationic type on humic acid facilitated transport of tetracycline in porous media[J]. Chemical Engineering Journal,2016,284:389-394.
    [35] Quik J T K,Velzeboer I,Wouterse M,et al. Heteroaggregation and sedimentation rates for nanomaterials in natural waters[J]. Water Research,2014,48:269-279.
    [36] Petosa A R,Jaisi D P,Quevedo I R,et al. Aggregation and deposition of engineered nanomaterials in aquatic environments:Role of physicochemical interactions[J]. Environmental Science & Technology,2010,44(17):6532-6549.
    [37] Wen X F. Study on the effect of microplastics on different soils and the migration and transformation of heavy metals in soils[D].Changsha:Hunan University,2020. [文晓凤. 微塑料对不同类型土壤及其中重金属迁移转化的影响研究[D]. 长沙:湖南大学,2020. ]
    [38] Chrysikopoulos C V,Syngouna V I. Effect of gravity on colloid transport through water-saturated columns packed with glass beads:Modeling and experiments[J]. Environmental Science & Technology,2014,48(12):6805-6813.
    [39] Yao J N. Effects and mechanism of kaolinite and micro/nano plastics on thallium(Ⅰ)in water-saturated porous media[D].Chongqing:Chongqing University,2022. [姚瑾妮. 高岭石和微/纳米塑料对铊(Ⅰ)在多孔介质中迁移的影响规律与机制[D]. 重庆:重庆大学,2022. ]
    [40] Li B L. Effects of different ionic strength/type and pH on the co-transport of Cu and colloids in porous media[D].Qingdao:Qingdao University,2022. [李柏良. 不同离子强度/类型和pH对多孔介质中胶体协同Cu运移的影响研究[D]. 青岛:青岛大学,2022. ]
    [41] Xie C A,Huang Q Y,Li S X. Research on the bacteria with the tolerance to heavy metal affecting the soil adsorption of colloidal system to Cu2+ and Cd2+ with infrared spectroscopy inspection[J]. Journal of Anhui Agricultural Sciences,2010,38(1):35-37,53. [谢朝阳,黄巧云,李素霞. 耐重金属细菌与土壤胶体体系吸附Cu2+、Cd2+的红外光谱研究[J]. 安徽农业科学,2010,38(1):35-37,53.]
    [42] Duffadar R D,Davis J M. Interaction of micrometer-scale particles with nanotextured surfaces in shear flow[J]. Journal of Colloid and Interface Science,2007,308(1):20-29.
    [43] Yuan R Q,Guo W,Wang P,et al. Impacts of surface chemical heterogeneity of porous media on transport of colloid[J]. Acta Scientiae Circumstantiae,2017,37(9):3498-3504. [袁瑞强,郭威,王鹏,等. 多孔介质表面化学异质性对胶体运移的影响[J]. 环境科学学报,2017,37(9):3498-3504.]
    [44] Bradford S A,Bettahar M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology,2006,82(1/2):99-117.
    [45] Bradford S A,Torkzaban S,Walker S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media[J]. Water Research,2007,41(13):3012-3024.
    [46] Liu Y J. Aggregation kinetics of nanoplastics in aquatic environments:Factors and mechanism[D].Guangzhou:South China University of Technology,2020. [柳彦俊. 纳米塑料在天然水体中凝聚的影响因素及机制[D]. 广州:华南理工大学,2020. ]
    [47] Wang Y,Wang X J,Li Y,et al. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics[J]. Chemical Engineering Journal,2020,392:123808.
    [48] Liu P,Zhan X,Wu X W,et al. Effect of weathering on environmental behavior of microplastics:Properties,sorption and potential risks[J]. Chemosphere,2020,242:125193.
    [49] Guo X T,Pang J W,Chen S Y,et al. Sorption properties of tylosin on four different microplastics[J]. Chemosphere,2018,209:240-245.
    [50] Napper I E,Bakir A,Rowland S J,et al. Characterisation,quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin,2015,99(1/2):178-185.
    [51] Lin D T,Hu L M,Shen C Y. Review on modeling the transport and retention of colloids in saturated porous media[J]. China Environmental Science,2022,42(2):914-924. [林丹彤,胡黎明,沈重阳. 饱和多孔介质中胶体运移模拟方法研究进展[J]. 中国环境科学,2022,42(2):914-924.]
    [52] Dong Z Q,Qiu Y P,Zhang W,et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research,2018,143:518-526.
    [53] Hua Z L,Tang Z Q,Bai X,et al. Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments[J]. Environmental Pollution,2015,205:161-169.
    [54] Li S,Yang M X,Wang H,et al. Adsorption of microplastics on aquifer media:Effects of the action time,initial concentration,ionic strength,ionic types and dissolved organic matter[J]. Environmental Pollution,2022,308:119482.
    [55] Chang B K,He B,Cao G,et al. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand:Joint effects of heteropolymerization and surface charge modification[J]. Science of the Total Environment,2023,884:163832.
    [56] Wang X X,Dan Y T,Diao Y Z,et al. Transport and retention of microplastics in saturated porous media with peanut shell biochar(PSB)and MgO-PSB amendment:Co-effects of cations and humic acid[J]. Environmental Pollution,2022,305:119307.
    [57] Li M,Zhang X W,Yi K X,et al. Transport and deposition of microplastic particles in saturated porous media:Co-effects of clay particles and natural organic matter[J]. Environmental Pollution,2021,287:117585.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

龚佳琪,董亚楠,徐绍辉,林青.聚苯乙烯对饱和多孔介质中土壤胶体与铜共运移的影响及机制[J].土壤学报,2025,62(2):436-447. DOI:10.11766/trxb202401150028 GONG Jiaqi, DONG Yanan, XU Shaohui, LIN Qing. Effect and Mechanism of Polystyrene on the Co-transport of Copper and Soil Colloids in Saturated Porous Media[J]. Acta Pedologica Sinica,2025,62(2):436-447.

复制
分享
文章指标
  • 点击次数:68
  • 下载次数: 288
  • HTML阅读次数: 296
  • 引用次数: 0
历史
  • 收稿日期:2024-01-15
  • 最后修改日期:2024-03-21
  • 在线发布日期: 2025-01-23
文章二维码