Dynamics and Availability to Crops of Residual Fertilizer Nitrogen in Upland Soil
Author:
Affiliation:

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (No. 31460546), Modern Agricultural System of Industrial Technology Construction Funds (No. CARS-3-1-31) and the Special Fund for Agroscientific Research in the Public Interest (No. 201303104)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Nitrogen is one of the most important and essential elements for growth of crops. Reasonable application of nitrogen fertilizer may promote crop growth and increase its yield, while excessive N fertilization may not only inhibit crop growth, but also leave a large amount of fertilizer nitrogen (N) in the soil as residue, which disturbs balance of soil nutrients and poses a potential threat to the ecological environment. So, it is necessary to study dynamics and availability to crops of the residual N to provide a theoretical basis for rationalizing N fertilization, improving N use efficiency and reducing fertilizer N loss. 【Method】To that end, a 4-year stationary field experiment was carried out on a winter wheat and summer maize rotation system, using15N-tracing technique. During the first cycle of the winter wheat and summer maize rotation, 240 kg hm-2 of nitrogen was applied in the form of 15N-laballed urea in all the plots before winter wheat was sown, in order to make a background of high N residual, and in the following summer maize season, the plots were divided into two groups applied with 0 and 120 kg hm-2 of ordinary urea, separately, at the prolonging stage of the crop to explore effect of N fertilizer application on fertilizer N residue in the soil. During the following three cycles of the rotation, no N fertilizer was applied for analysis of dynamic and availability to the crops of the residual fertilizer N in the soil. 【Result】Results show that residue of the 15N-laballed N fertilizer that was applied before sowing of winter wheat during the first cycle of the rotation, was found throughout the whole soil profiles of 0~200 cm, after the crop was harvested, and most of that accumulated in the 0~40 cm soil layers. The residue amounted to 200.9 kg hm-2 in total, accounting for 83.7% of the total N fertilizer applied. In the subsequent summer maize growth season, the amount of residual fertilizer N first dropped rapidly, and then declined slowly with the season going on, and eventually leveled off. After for 4 years of rotation, still a considerable amount of 15N was found in the 0~300 cm soil profile, reaching 47.1 kg hm-2 and 54.0 kg hm-2, respectively, in the plots where no or 120 kg hm-2 N fertilizer was applied to summer maize during the first circle of the rotation. Obviously a part of the fertilizer N was fixed by organic matter in the soil. The recovery rate of residual N by the crop decreased gradually year by years, but the rate varied differed between the two treatments. The total N use efficiency of four years was 46.9% and 50.4%, respectively, in the plots with or without N sidedressing for maize. The total N use efficiency of the winter wheat and summer maize was 41.6% and 42.0%, respectively, in the first year of the rotation, and only 5.3% and 8.4% in the remaining 3 years. During the four years, about 38.1% and 29.7% of the residual fertilizer N was lost, respectively, in the two treatments, with or without N sidedressing, and the loss occurred mainly in the first summer maize growing season. 【Conclusion】It indicates that some of the fertilizer N applied in upland wound inevitably remain in the soil as residue, and this part of residual fertilizer N is low in availability to crops, and has a limited portion being gradually taken up by crops in the late 3 years, a portion remaining in the form of organic N, and the other turning unavailable and lost. Sidedressing of N fertilizer in the summer maize season may promote crop uptake of residual fertilizer N in the soil, while retaining more residual fertilizer, and consequently it reduces the loss of residual N. However, all the effects are attained at the cost of high loss of the N fertilizer per se. Therefore, it is advisable to take into account fertilizer N in the soil when making plans for N fertilizer application.

    Reference
    Related
    Cited by
Get Citation

WANG Xina, WANG Zhaohui, LI Hua, WANG Ronghui, TAN Junli, LI Shengxiu. Dynamics and Availability to Crops of Residual Fertilizer Nitrogen in Upland Soil[J]. Acta Pedologica Sinica,2016,53(5):1202-1212.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 22,2015
  • Revised:June 02,2016
  • Adopted:June 17,2016
  • Online: June 28,2016
  • Published: