Distribution and Formation Environment of Fe-Mn Nodules in Soils Derived from Quaternary Loess in North China
Author:
Affiliation:

Clc Number:

Fund Project:

the National Natural Science Foundation of China (No. 41771245 & 41371223), National S&T Special Basic Project (Nos.2008FY110600 & 2014FY110200)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Fe-Mn nodules in soils, pedogenic products of the soils, contain a lot of information related to soil-forming processes and variation of soil-forming environment and can be used as important basis for soil classification. So distribution of Fe-Mn noudles plays an important role in understanding of the mechanism of Fe-Mn noudles formation and soil classification. It is generally believed that Fe-Mn noudles are mainly distributed at lowlands with shallow groundwater table. However, Fe-Mn nodules are found in uplands with deep groundwater table in Northeast of China, which causes a lot of problems in soil classification in this region. The objectives of this study were to explore the spatial distribution of soil Fe-Mn nodule and explore the environment and mechanism of their formation in North China. The principles for selecting soil profiles were: (1) choose soil profiles situated in stable uplands with deep groundwater table, to ensure that the soils are not affected by groundwater, and in uplands free of obvious evidence of erosion and deposition in the processes of soil formation; (2) pick soils developed from the Quaternary loess-like materials, to ensure that soils were derived from the same parent materials as much as possible. 【Method】A total of 345 soil profiles, based on the soil series survey in 2010’s and the legacy data of the Second National Soil Survey (SNSS) during 1980’s, were prepared in 10 provinces in the temperate zone of North China. Whether the Fe-Mn nodules were presence or not in each soil horizon was examined. The mean annual precipitation (MAP) and mean annual temperature (MAT) of each soil sample site was retrieved from the China Meteorological Science Data Sharing Service. Relationships between formation of Fe-Mn nodules in soils and climate conditions of soil-forming were analyzed. 【Result】 Results show that Fe-Mn nodules were found in 74 profiles or 21.5% of 345 soil profiles studie in totald. The soil profiles with Fe-Mn nodules are distributed mainly in a region, 120.82°~133.37° E and 41.19°~49.01° N, a part of the humid temperate zone, where MAP is 370.6 mm~ 917.7 mm, and MAT 0.9℃ ~14.9℃. In winter the soils there in remain frozen for a long time, and in spring they undergo a long period of freezing-thawing alternation, with the surface soil getting pulpy, because soil water keeps moving up in the topsoil layer when it gets frozen in winter and when the frozen topsoil begins to thaw, soil water remain in the topsoil layer making it pulpy in early spring because the subsoil layer is still not thawed, preventing the water in the topsoil layer from percolating down. This results in a reducing environment close to the freezing layer for a period of time before the frozen soil thaws thoroughly, which lays a solid foundation for the formation of Fe-Mn nodules. 【Conclusion】 It is, therefore, concluded that the formation of Fe-Mn nodules in stable upland soils is closely related to the alternation of freezing and thawing in spring.

    Reference
    Related
    Cited by
Get Citation

WANG Qiubing, JIANG Zhuodong, SUN Zhongxiu. Distribution and Formation Environment of Fe-Mn Nodules in Soils Derived from Quaternary Loess in North China[J]. Acta Pedologica Sinica,2019,56(2):288-297.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 09,2018
  • Revised:October 24,2018
  • Adopted:December 14,2018
  • Online: December 21,2018
  • Published: