Effect of Soil Amelioration on Soil Nutrients at Mining Dumps in the Shanxi-Shaanxi-Inner Mongolia Region
Author:
Affiliation:

Clc Number:

Fund Project:

Supported by the National Key Research and Development Program (No. 2017YFC0504504-2), and the Science and Technology Service Network Program of the Chinese Academy of Sciences (No. KFJ-STS-ZDTP-012)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】The Shanxi-Shaanxi-Inner Mongolia region is an energy base in China, massive opencast mining activities in the region bring about a series of environmental and ecological problems. In this case, reconstruction of disturbed surface ecosystems and reclamation of dumps have become the upmost urgent tasks in eco-environment rehabilitation of the region. The soil in the region is dominated with sandy loess soil, and some feldspathic sandstone and weathered coal. Studies have shown that feldspathic sandstone can be used to improve soil properties of sandy loess, and weathered coal, too, as soil amendment. However, effects of using feldspathic sandstone and weathered coal as soil amendment to improve soil properties and fertility of reconstructed soil are rarely reported. To reconstruct the soil of the dump of the Yongli Coal Mine, this study was oriented to explore effects of different soil amelioration modes on soil nutrients in the soil of the dump so as to accumulate certain theoretical and practical experience in reclaiming deserted dumps and restoration of the ecosystems therein 【Method】In this study, three types of reconstructed and artificially aged soils, different in structure and nutrient state, i.e. FS (Feldspathic sandstone mixed with sandy loess soil), WC (Weathered coal mixed with sandy loess soil), and SL (Sandy loess soil), were selected for comparison with the soil under original landform grown mainly with Stipa bungeana (OL, Original landform soil) and a new dump (CK, Blank control). So there were 5 treatments and 3 replicates for each treatment. After three years of artificially aging through fertilization and plant cultivation, soil samples were collected from the five treatments for analysis of soil organic carbon, total nitrogen, nitrate nitrogen, ammonium nitrogen and available phosphorus in the 0~20 cm surface soil. Comparison was made for differences in nutrient status and the weighted synthesis method was used to evaluate the nutrient quality of several soil types.【Result】 Results show that: 1) SOC in the reconstructed soils (FS, WC and SL) and the original landform soil (OL) was 12.2, 10.0, 5.1 and 4.9 times respectively as high as that in the new dump in the 10~20 cm layer soil. Soil total nitrogen in OL was the highest among the five treatments. TN in the 0~10 cm layer in the three reconstructed soils was about 5 times as high as that in the new dump, while TN in the 10~20 cm soil layer, about 3 times as high. Nitrate nitrogen in the 0~10 cm soil layer soil was the highest in SL, reaching up to 3.61 mg·kg-1. Ammonium nitrogen in the 0~20 cm soil layer varied randomly, showing no consistent tendency among the treatments. Available phosphorus in the 0~10 cm and 10~20 cm soil layers was 0.36 mg·kg-1 and 0.9 mg·kg-1, respectively, lower in OL than in CK. 2) Soils under three different amelioration modes were obviously higher than OL in content of soil organic carbon, available phosphorus and nitrate nitrogen, and almost as high as OL in content of soil ammonium nitrogen, but still lower than OL in content of soil total nitrogen. 3) The soil quality index in 0~10 cm soil layer was 0.16~0.79 while range from 0.16 to 0.55 in 10~20 cm soil layer, and the soil quality index among five soil types shows WC>FS>SL>OL>CK.【Conclusion】All the findings in the experiment demonstrate that the soil amelioration mode of mixing weathered coal has the highest soil nutrient quality, followed by the mode of mixing fieldspathic sandstone, and the soil nutrient quality of sandy loess soil is higher than the original landform soil, while the quality of the blank control is the worst, showing three amelioration modes all have some positive effects on soil nutrients. The findings may serve as indices for evaluating soil fertility and as theoretical basis for constructing high-efficient artificial soils, and also provide reasonable suggestions for land reclamation and ecological restoration in mine dumps.

    Reference
    Related
    Cited by
Get Citation

WANG Lili, ZHEN Qing, WANG Ying, SUN Cengceng, YAN Xiang, ZHENG Jiyong. Effect of Soil Amelioration on Soil Nutrients at Mining Dumps in the Shanxi-Shaanxi-Inner Mongolia Region[J]. Acta Pedologica Sinica,2018,55(6):1525-1533.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 14,2018
  • Revised:May 06,2018
  • Adopted:May 29,2018
  • Online: June 25,2018
  • Published: