Relationship of Dry-Wet Climate Changes in Northern China in the Past 57 Years with Pacific Decadal Oscillation (PDO)
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (No. 41561024)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Global warming has caused heterogeneous changes in precipitation intensity and distribution, which inevitably impacts dry and wet status of the climate. In order to explore changes in distribution of dry and wet climate zones occurring in recent 57 years(1960—2016) in the northern part of the China , this paper characterize the spatiotemporal variation of dry-wet climate in the northern part of China over the period, analyzed the variation for impacts of the Pacific Decadal Oscillation (PDO), and explored potential causes of the variation.【Method】The meteorological data used in this study were downloaded from the “China Surface Climate Daily Data” and “China Surface Climate Data & Daily Data V3.0” of the National Meteorological Information Center, including daily mean temperature, mean minimum temperature, mean maximum temperature, precipitation, relative humidity, mean wind velocity at 10 m height and sunshine hours. Based on the daily climate data of the 424 meteorological stations in northern part of China from 1960 to 2016, ET0 was calculated with the Penman-Monteith method, humid indices(HI) were analyzed for spatio-temporal variation of the wet-dry climate, impacts of the Pacific Decadal Oscillation (PDO) on variation of the wet-dry climate were explored with the correlation analysis method, and spatio-temporal variation of the dry and wet climate was characterized with the linear trend analysis method and the multiple linear regression spatial interpolation method.【Result】Results showed: the overall wet-dry status of the northern part of China fluctuated up and down the mean of the 57 years and did not follow any obvious linear variation trend. Spatially, it displayed as wetting in Northwest China, Qinghai-Tibetan Plateau, Inner Mongolia and Xinjiang, and drying in North China. The extremely arid region was shrinking in area, while the semi-arid, and arid regions expanding, which indicates that the climate-sensitive regions are overspreading. Apparent wetting trends were observed in the extremely arid, arid and semi-arid regions. All the findings show that the boundary between the wet and dry regions was shifting during the period of 1991—2016 to the period of 1960—1990. The northern part of the country experienced a wetting process and the northwestern and western parts of the country and the Qinghai-Tibetan Plateau did a significant one, too. The west boundaries of the extremely arid and arid regions shifted towards the east, and their south and north boundaries retreated inwardly. The trend of aridification was found in North China and parts of the Northeast China. The central section of the boundary of the semi-arid and semi-humid regions along the Yellow River in North China moved southeastward. The climate in the central part of Northeast China and western part of Northwest China was turning humid because of increasing precipitation and decreasing ET0. On the contrast, the climate in the central and western parts of North China, and eastern and northeastern parts of Inner Mongolia was turning arid because of decreasing precipitation and increasing ET0. In the eastern part of Northwest China, western part of Northwest China and eastern part of Inner Mongolia, PDO index was positively related to dry and wet climate, that is to say, when PDO is in its positive phase, precipitation in those regions would be higher and the surface climate relatively wet. When PDO is in its negative phase, precipitation in the above regions would be lower and the surface climate relatively dry. The case in North China was just opposite. Variation of the wet-dry climate was negatively related to PDO, namely when PDO is in its positive phase precipitation in North China tends to be lower and the surface climate relatively dry. When PDO is in its negative phase, precipitation in North China would be higher and the surface climate relatively wet.【Conclusion】All the findings in this paper suggest that the climate in northern part of the country was on the process of getting wet in two time period (period 1: 1960—1990; period 2: 1991—2016) and PDO is closely related to the dry-wet climate.

    Reference
    Related
    Cited by
Get Citation

Jia Yanqing, ZHANG Bo. Relationship of Dry-Wet Climate Changes in Northern China in the Past 57 Years with Pacific Decadal Oscillation (PDO)[J]. Acta Pedologica Sinica,2019,56(5):1085-1097.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 02,2018
  • Revised:December 02,2018
  • Adopted:January 03,2019
  • Online: April 30,2019
  • Published: