Effects of Soil Erosion on Soil Moisture and Infiltration Characteristics of Slope Farmland
Author:
Affiliation:

(1.College of Resources and Environment, Southwest University, Chongqing 400715, China;2. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateaus, Institute of Soil and Water Conservation, NorthwestA&F University, Yangling,Shannxi 712100, China)

Clc Number:

Fund Project:

National Natural Science Foundation of China (No. 41771310)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Cultivated slopeland in the hilly areas of purple soil is an important erosion inflicted area in the Yangtze River Basin, where soil moisture is not only the main factor governing agricultural productivity of the land and crop growth in the area, but also an important one influencing the erosion process therein. Soil moisture is of great significance to rain-fed agricultural sloping farmlands. This study was to explore impacts of soil erosion on soil moisture and water infiltration in sloping farmlands, in an attempt to provide some parameters as a basis for control of soil water erosion in sloping farmlands in hilly purple soil areas.【Method】For this paper, a soil erosion simulation experiment was carried out on a shoveled plot of land, to explore soil water characteristic curves, water infiltration, soil water pool characteristics and drought resistance of the sloping farmland 0, 5, 10, 15 and 20 cm in depth.【Result】Results show: (1) Aggravation of soil erosion degree reduced volumetric water content of the soil that remained the same in suction, which is detrimental to water storage in the sloping farmland soil, leading to reduced drought resistance of the slopeland. Under the same suction force, soil volumetric moisture content decreased with aggravating soil erosion; when soil erosion occurred in the 0 to 20 cm soil layer, soil volumetric water content decreased by 7.8% ~ 24.32%, or 17.80% on average. With aggravating soil erosion, soil water infiltration rate gradually decreased too in the 0~10 cm soil layer, and at the same time soil water infiltration rate tended to be similar in all soil layers regardless of vertical depth. (2) Soil water pool characteristics varied sharply with the degree of soil erosion. With aggravating soil erosion, the total soil water pool capacity tended to rise firstly, and exhibited an order of S-10 (422.7 t•hm-2 ) > S-5 (413.1 t•hm-2) > S-15 (408.2 t•hm-2) > S-0 (404.9 t•hm-2) > S-20 (403.5 t•hm-2) by layer, and at the same time, ineffective portion of the water pool increased to a varying extent; soil erosion reduced water holding efficiency of the soil, which, however, almost had nothing to do with degree of the erosion. (3) Soil water pool characteristics in the 0~40 cm soil layer did not vary much from slopeland to slopeland different in soil erosion; the maximum water holding capacity accounts for 75% of the saturated water holding capacity in the soil layer the same in depth, regardless of erosion degree. With aggravating soil erosion cumulative water loss from the cultivated layer, under the same suction, increased by a varying degree, and displayed a rising trend on the whole, and a declining order, by layer, of S-10> S-20 > S-15 > S-5 > S-0; This shows that under the same soil suction, the surface soil layer lost the least water and the 0~10 soil layer the most.【Conclusion】Soil erosion causes destruction of soil structure, thus reducing soil water infiltration, water retaining capacity, and drought resistance of sloping farmlands. All the findings in this research may serve as technical parameters for the regulation of soil moisture and drought resistance of farmlands on purple soil slopes on the plot scale.

    Reference
    Related
    Cited by
Get Citation

LOU Yibao, SHI Dongmei, JIANG Na, JIN Huifang, YE Qing. Effects of Soil Erosion on Soil Moisture and Infiltration Characteristics of Slope Farmland[J]. Acta Pedologica Sinica,2020,57(6):1399-1410.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 29,2019
  • Revised:March 31,2020
  • Adopted:May 13,2020
  • Online: August 25,2020
  • Published: November 11,2020