Progress in Research and Agricultural Application Prospect of Biological Nitrification Inhibitors
Author:
Affiliation:

Clc Number:

S143.1

Fund Project:

Supported by the NSFC-JST Project (No. 31761143015), the Natural Science Fundation for Distinguished Young Scholar of Jiangsu Province of China (No. BK20190108) and the Key Research and Development Program of Shandong Province of China (No. 2019JZZY010701)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In China, N fertilizer use efficiency (NUE) is quite low as affected by its high-input intensive production mode in agriculture. A considerable portion of the nitrogen fertilizer applied to the cropping systems is lost to the environment as ammonia (NH3), nitrate (NO3), and nitrous oxide (N2O) as greenhouse gas, thus raising agricultural production cost and aggravating environmental pollution. Nitrification is the key transformation process of nitrogen cycling in soil, and is closely related to nitrogen loss in farmland. Some plants can produce and secrete compounds that inhibit nitrification and are called biological nitrification inhibitors (BNIs). Thu use of such BNIs may be an efficient and environment-friendly nitrogen management strategy. Here, a review of recent key developments in the field of biological nitrification inhibitors at home and abroad was presented, elaborating significances, substance types, functions, secretion and mechanism of BNIs secreted by roots. Researches in the past, particularly with focus on tropical pasture grasses and sorghum, held that releasing of BNIs was a nitrogen-preserving survival mechanism plants used to adapt to low-nitrogen environments in natural ecosystems. This paper suggests that BNIs are equally important in the high-N-input agricultural ecosystems and that a certain number of food crop varieties also have high BNI activity. In addition, BNIs that are produced by plants may evolve as specific responses to nitrifying environments. The mechanisms of BNIs secretion under waterlogged and aerobic conditions are quite similar, but differ somewhat, for instance effect of the parts of the root system exposed to NH4+ and pH. The hypothetic mechanism that BNIs released from plant cell membranes is proposed, for example, 1, 9-decanediol might be released via the ATP-binding cassette (ABC) transporter or members of the multidrug and toxic compound extrusion (MATE) transporter family. In terms of action targets, BNIs may regulate more ammonia-oxidizing microbial species and enzyme sites than the synthetic nitrification inhibitors (SNIs). Prospects of how to make use of BNIs in improving nitrogen utilization and reducing environmental pollution in agriculture are also discussed, such as high BNI-activity plants (such as pasture)-crop rotation, nitrogen fertilizer synergist, use of BNI traits for crop genetic improvement. For future researches, emphases should be laid on the following aspects:(1) to explore BNI functions and BNIs types in cultivation of important crops, and take into account interaction between BNIs substances; (2) to further reveal mechanism of known BNIs substances inhibiting nitrification, in addition to AOA and AOB, attention should be paid to response of the newly discovered Comammox, including other nitrogen transformation processes such as denitrification, and evaluation of potential loss of ammonia via volatilization caused by BNIs; (3) to investigate key genes and molecular genetic mechanisms regulating BNIs secretion through genome-wide association analysis (GWAS); and (4) to explore effects of BNIs in different soil conditions and with different crops in improving agriculture by field experiments, which hopefully may serve as reference for the developing of future BNIs technologies and products, improving the quality of agricultural produces, and promoting the green development of modern agriculture.

    Reference
    Related
    Cited by
Get Citation

LU Yufang, SHI Weiming. Progress in Research and Agricultural Application Prospect of Biological Nitrification Inhibitors[J]. Acta Pedologica Sinica,2021,58(3):545-557.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 12,2020
  • Revised:June 05,2020
  • Adopted:July 21,2020
  • Online: December 10,2020
  • Published: May 11,2021