Effects of Prevention and Control Measures of Soil Erosion on Molecular Ecological Network of Soil Microbial Community in Pinus massoniana Plantation
Author:
Affiliation:

Clc Number:

X172

Fund Project:

The National Natural Science Foundation of China (Nos. U19A2047, 41807069) and the Hunan Water Resources Science and Technology Project (No. [2017]230-40)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】 Prevention and control measures of soil erosion can restore forest vegetation and improve soil quality, and hence affect the soil microbial community structure. Soil microbes play an important role in soil substance recycling. Thus, it is of great significance to explore changes in soil biochemical processes and to study the effects of typical prevention and control measures of soil erosion on the interactions between soil microbial community. Ecological network analysis can be used to reveal microbial interactions and microbial network structure. However, it is still unclear how prevention and control measures of soil erosion affect the microbial interaction network in Pinus massoniana plantation. There are few researches exploring soil microbial interactions and the changes in environmental factors caused by agricultural engineering measures and vegetation planting. 【Method】 In this paper, a one-year field experiment was carried out in Pinus massoniana plantation of the Institute of Soil and Water Conservation of Shaoyang City (111°22'E, 27°03'N), Hunan Province, China. The experiment was designed to have three treatments, one for digging fish-scale pits and planting grass, one for digging fish-scale pits and planting grass and shrubs and another for a control check without any measure; three replicates were conducted for each treatment. One year later, soil samples were collected from the three treatments, separately, for analysis of soil physicochemical properties and DNAs. The 16S rRNA and 18S rRNA Illumina MiSeq high-throughput sequencing technology was used to determine the soil microbial community structure under different treatments, and the random matrix method was used to construct the microbial network. 【Result】After implementation of prevention and control measures of soil erosion, soil microbial community composition changed as the relative abundance of Chloroflexi significantly decreased and that of Proteobacteria and Acidobacteria significantly increased. Ecological network analysis showed that the total nodes, total links, average connective degree, and the modularity of the microbial network increased. This indicated an increase in the microbial network scale and complicated microbial interactions. Three microbial networks were dominated by negative interactions (60.59%~67.49%), and the competition between species was strengthened after the implementation of the two measures. Parts of the microbial communities of Chloroflexi, Actinobacteria, and Proteobacteria played an important connecting role in the microbial network of the study area. Also, some key microbial communities with low relative abundance (< 1%) played a key role in the establishment of the microbial network. The average path distance of microbial networks became longer after the implementation of the measures. This means that the response rate of microbial action slowed down and the stability of the community structure was improved. Additionally, the measure of digging fish-scale pits and planting grass and shrubs was more effective than digging fish-scale pits and planting grass. Soil bulk density (R2 = 0.465, P < 0.05), pH (R2 = 0.377, P < 0.05) , soil organic matter (R2 = 0.383, P < 0.05), and total nitrogen (R2 = 0.545, P < 0.01) had significant influence on bacterial community structure while soil water content (R2 = 0.485, P < 0.05) had a significant influence on fungal community structure. 【Conclusion】After implementation of prevention and control measures of soil erosion (i) soil microbial community structure changed, (ii) the microbial network scale, interaction and stability increased, and (iii) the competition within soil microbial communities became more intensive.

    Reference
    Related
    Cited by
Get Citation

LI Qian, LI Zhongwu, NIE Xiaodong, LIU Yaojun, TONG Di, XIAO Linhui, SHEN Zhigao, SHI Lin. Effects of Prevention and Control Measures of Soil Erosion on Molecular Ecological Network of Soil Microbial Community in Pinus massoniana Plantation[J]. Acta Pedologica Sinica,2022,59(3):819-832.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 22,2020
  • Revised:February 28,2021
  • Adopted:April 23,2021
  • Online: May 11,2021
  • Published: