Identifying the Status of Heavy Metal Pollution of Cultivated Land for Tradeoff Spatial Fallow in China
Author:
Affiliation:

Clc Number:

Q938.1+1

Fund Project:

Supported by the National Key Technology Research and Development Program of China(No. 2015BAD06B02)and the External Coordination Project of China Land Survey and Planning Institute (No. 2018041)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective] Farmland pollution affects national food safety and public health. From the perspective of soil pollution, clarifying the scale and spatial layout of fallow land at the national scale is of great importance. To restore heavy metal-contaminated farmland soils and ensure green development of agriculture, an urgent scientific solution is needed for soil pollution. In recent years, fallow has been pioneered as a means of recuperation and management of polluted farmland. However, some important management issues such as how much farmland should be fallowed, location of the fallow area, and how to fallow are yet to be defined at the national scale.[Method] In this study, we constructed a database of heavy metal pollution in Chinese farmland soils which comprised of 6 490 sample data from 2 343 farmland locations. These data were extracted from 569 published papers on the topic of farmland heavy metal pollution (Including combined pollution and single heavy metal pollution, such as Ni, Hg, As, etc.), published from 2000 to 2018 on Web of Science and China National Knowledge Infrastructure (CNKI). We assessed heavy metal pollution, the influence index of soil comprehensive quality, and the potential ecological risk to identify the spatial distribution of fallow priority grades, including urgent-fallow zone (I), regular-fallow zone (II), controlled-rotation zone (III), and general-rotation zone (IV).[Result] The results showed that the excessive concentration rates of heavy metals was Cd (18.03%)>As (2.95%)>Ni (2.26%)>Hg (1.55%)>Zn (1.42%)>Pb (1.34%)>Cu (0.49%)>Cr (0.10%). The proportions of soil environmental quality index such as severely, moderately and slightly exceeded were 1.71%, 3.89% and 23.84%, respectively. Also, the ratio of extremely strong and very strong potential ecological risk accounted for 0.29% and 2.89%. The ratio of the fallow area in China due to soil heavy metal pollution is 15.58%, of which the proportions of level I, II and III are 0.77%, 1.53% and 3.26%, respectively. Level I fallow areas are mainly distributed in 8 provinces of China including Henan, Hunan, Yunnan, Anhui etc. Additionally, fallow areas are mainly distributed in Henan and Hunan province, followed by Liaoning and Shandong province.[Conclusion] To promote the remediation of heavy metal pollution in Chinese surface soils, the implementation of differentiated fallow strategies for farmland areas with different pollution levels is recommended. This study shows the status of heavy metal pollution in farmland soils and spatially identified the urgency of fallowing areas in China. It also provides theoretical support for controlling farmland soil pollution and fallow space-time allocation in China.

    Reference
    Related
    Cited by
Get Citation

ZENG Siyan, YU Haochen, MA Jing, LIU Junna, CHEN Fu. Identifying the Status of Heavy Metal Pollution of Cultivated Land for Tradeoff Spatial Fallow in China[J]. Acta Pedologica Sinica,2022,59(4):1036-1047.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 27,2020
  • Revised:January 22,2021
  • Adopted:March 26,2021
  • Online: March 30,2021
  • Published: April 11,2022