Research on Spatio-temporal Heterogeneity of Soil Electrical Conductivity in Cotton Field Based on Electromagnetic Induction Technology
Author:
Affiliation:

Clc Number:

S156.4

Fund Project:

Supported by the XPCC Young and Middle-aged Innovative Leading Talents Project (No.2020CB032), National Key R&D Project (No.2018YFE0107000) and the National Natural Science Foundation of China (No.42071068)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective] Characterizing spatial and temporal variability of soil salinity at field and landscape scales is important for a variety of agronomic and environmental concerns. In arid regios, soil salt content and its distribution position in the profile are important factors for the calculation of the irrigation quota of salinized soil. Due to the strong spatial variability of soil salinity content, the guiding value of soil surface salinization information for quota irrigation is very limited. A three-dimensional visualization study of the distribution and content of salinity in the soil profile is of great significance to the fixed irrigation of saline soil. The objective of this study was to evaluate apparent electrical conductivity (ECa) directed soil sampling as a basis for monitoring management-induced Spatio-temporal change in soil salinity.[Method] A soil salinity assessment study was conducted on an 18 hm2 saline-sodic field in Alar's Agricultural Science and Technology Park from March to November 2018. The study evaluated the three-dimensional spatio-temporal change that had occurred as a result of irrigation with drainage water over that period. Using geospatial electromagnetic induction (EMI) measurements of ECa and a spatial response surface sampling design 18 soil profile sites were selected and they reflected the ECa measurements every time. At each site soil profile samples were taken at 0.2 m intervals to a depth of 1 m and analyzed for electrical conductivity of the saturation extract (ECe). Also, the soil apparent conductivity data of four different periods and the electrical conductivity data of soil profile samples collected synchronously were analyzed. The inversion model between measured and apparent conductivity of different soil layers in the soil profile was constructed by the multiple linear regression method. Furthermore, the 3D visualization of soil salinity was realized by using 3D-IDW and the spatial and temporal changes of soil salinity in cotton field under mulch drip irrigation of Xinjiang were studied.[Result] The results showed that there was a good correlation between the apparent conductivity and the measured conductivity. The determination coefficient (R2) of the measured conductivity inversion model based on the apparent conductivity data was between 0.82 and 0.99. The results of 3D-dimensional data statistics of soil electrical conductivity showed that the distribution characteristics and content of soil salinity in different periods are quite different. These differences were attributed to human factors such as irrigation, film mulching and uncovering, and natural factors such as air temperature, evaporation and groundwater level. Also, the distribution type of soil salinity in March was uniform and the electrical conductivity range of the 0-100cm soil profile was 0.78 to 0.88 dS·m–1. The salinity in June and October was mainly concentrated in 0~20 cm and the electrical conductivity was 3.32 to 5.28 dS·m–1, respectively. Also, the electrical conductivity of 20~100 cm was 0.99~1.36 to 0.95~1.70 dS·m–1, respectively. In July, the salinity was mainly concentrated in 0~40 cm, and the conductivity in 0-40cm was 2.25~2.45 dS·m–1while the conductivity of 40~100 cm was 0.87~0.93 dS·m–1.[Conclusion] An assessment of three- dimensional spatio–temporal changes in soil salinity was conducted to provide a preliminary evaluation of the sustainability of irrigation quota on the Agricultural Science and Technology Park to ascertain its potential as an alternative for drainage water disposal. The results of this study can be used as guidance for accurate irrigation application in cotton fields.

    Reference
    Related
    Cited by
Get Citation

FENG Chunhui, LIU Xinlu, JI Wenjun, WU Jialin, LIU Weiyang, PENG Jie. Research on Spatio-temporal Heterogeneity of Soil Electrical Conductivity in Cotton Field Based on Electromagnetic Induction Technology[J]. Acta Pedologica Sinica,2022,59(4):999-1011.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 17,2020
  • Revised:February 22,2021
  • Adopted:September 16,2021
  • Online: September 24,2021
  • Published: April 11,2022