Impacts of Artificial Revegetation on Soil Fungal Community in Desertified Alpine Grassland
Author:
Affiliation:

Clc Number:

S154.3

Fund Project:

the Key R&D and Transformation Projects of Qinghai Province (2019-SF-152); the Natural Science Foundation Committee of China (31971749); the Qinghai Innovation Platform Construction Project:Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area (2017-ZJ-Y20)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】This study aimed to illustrate the impacts of different revegetation approaches on the resilience of soil fungal communities in desertified alpine grasslands, and to explore the main environmental factors in driving the succession of soil fungal community.【Methods】We sampled surface soils within 0-10 cm from four different types of alpine grasslands, i.e., natural grassland (NG), desertified grassland (DG), herb-based artificial grassland (AG) and shrub-based artificial grassland (AS). Fungal community biomass, α-diversity and structure were studied using qPCR and Illumina Mesiq high-throughput sequencing technologies.【Result】1) grassland desertification significantly decreased soil fungal biomass and α-diversity, which showed no significant difference among AG, AS and NG after 22-year revegetation. 2) Both desertification and artificial revegetation significantly changed the fungal community structure. The relative abundance of Basidiomycota significantly (P<0.05) decreased after desertification. Some rare fungi phyla with less than 1% relative abundance tended to disappear, while the relative abundance of unclassified fungal phyla significantly (P<0.01) increased. After 22 years of revegetation, there was no significant difference in the relative abundance of most fungal phyla among AG, AS and NG. AG and NG showed more similar fungal structure than that of AS and NG. 3) The correlations of soil fungal α-diversity with vegetation and soil properties were diversity-index-dependent, while fungal structure significantly (P<0.01) positively correlated with most of vegetation and soil properties. Importantly, vegetation and soil properties jointly explained 21.4%-50.0% of variations in soil fungal community structure.【Conclusion】These findings indicate that fungal diversity and biomass in desertified grassland almost paralleled to the undegraded level after 22 years of revegetation. Despite fungal community structure in revegetation sites was still not similar to that of natural grassland, it is more beneficial to use grassland plants than shrub species for the restoration of soil fungal community structure in the degraded alpine grassland.

    Reference
    Related
    Cited by
Get Citation

WANG Yani, HU Yigang, WANG Zengru, LI Yikang, ZHANG Zhenhua, ZHOU Huakun. Impacts of Artificial Revegetation on Soil Fungal Community in Desertified Alpine Grassland[J]. Acta Pedologica Sinica,2023,60(1):280-291.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 05,2021
  • Revised:October 16,2021
  • Adopted:December 05,2021
  • Online: January 25,2022
  • Published: