Desorption and Migration Characteristics of Cu/Cd Composite Contaminated Soil Under Different pH/Ionic Strength
Author:
Affiliation:

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of Chin?a(No.41571214)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】 Some changes in the external environment are often observed after the remediation of heavy metal polluted soils with solidification stabilization technology. Thus, an important scientific question worth discussing is whether the inactivated heavy metals will be released again and migrate in the soil, causing pollution risk, and under what conditions.【Method】 In order to reveal the effects of different chemical factors on the activation and migration of heavy metals in contaminated soil, the desorption and migration behavior of Cu2+ and Cd2+ in soil under different ionic strength, pH and cation types (Ca2+, Na+) were studied by laboratory soil column experiments. 【Result】 In general, the peak leaching concentration of Cu2+ and Cd2+ increased with the increase in ionic strength. Using CaCl2 as a leaching agent, the desorption capacity of Cu2+ and Cd2+ increased at 0.005, 0.01, 0.05 and 0.1 mol·L–1 CaCl2, and the desorption capacity of Cd2+ was higher than that of Cu2+. However, 0.5 mol·L–1 CaCl2 inhibited the desorption of Cd2+ and the desorption of Cu2+ was higher than that of Cd2+. When pH decreased, the desorption of Cu2+ and Cd2+ increased, that is, the acidic environment was conducive for the desorption of Cu2+ and Cd2+. However, the concentration peak of Cu2+ and Cd2+ at pH 3 was smaller than that at pH 4 and 5. Ca2+ was more favorable for the desorption of Cu2+ and Cd2+ than Na+, but NaCl solution was more favorable for the desorption of Cu2+ at 0.005 mol·L–1. Also, the concentration of Cu2+ in the leaching stage with deionized water was higher than that in the leaching stage with CaCl2. In addition, soil particles exhaled at 0.005, 0.05 and 0.5 mol·L–1 NaCl, and the flow rate decreased at 0.05 and 0.5 mol·L–1 NaCl.【Conclusion】 The increase in ionic strength, decrease in pH and presence of divalent cations were beneficial to the desorption and migration of heavy metals in soil. This study provides a theoretical basis for soil remediation and heavy metal release after soil remediation.

    Reference
    Related
    Cited by
Get Citation

LI Jing, LIN Qing, XU Shaohui. Desorption and Migration Characteristics of Cu/Cd Composite Contaminated Soil Under Different pH/Ionic Strength[J]. Acta Pedologica Sinica,2023,60(4):1026-1034.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 08,2021
  • Revised:January 16,2022
  • Adopted:March 30,2022
  • Online: April 06,2022
  • Published: July 28,2023