Effects of Humic Acid on Fungal Community Structure in a Peanut-continuous Cropping Soil
Author:
Affiliation:

Clc Number:

S154.1

Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 32071642 and 41771298), the Natural Science Foundation of Jiangsu Province, China (No. BK20191511)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】The negative impact of soil-borne diseases on peanut is enhanced for continuous planting. Thus, green prevention and control practices on soil-borne diseases are always an important part when establishing a resource-saving and environment-friendly sustainable control technology system. As a natural stimulant, humic acid has been shown to suppress the activity of soil-borne pathogenic fungi, and the inhibitory effect has a wide range and diverse manifestations. However, valid information is still lacking about the effects of humic acid on the microbial community. The objective of this work was to investigate the response of soil fungal communities under continuous peanut planting to humic acid from different origins, and to provide a theoretical basis for researching and developing a green-effective prevention and control method on soil-borne diseases in the continuous planting soil.【Method】 Different concentrations of humic acids from mossy peat and weathered coal were respectively added to two peanut planting soils (including 1 year and 6 years continuous planting), and soils were cultured with indoor thermostatic incubation. The soil fungi community was sequenced by Illumina MiSeq PE300. PerMANOVA, correlation analysis, and other methods were used to explain the effect of humic acid on the soil fungi community. 【Result】The results showed that the addition of humic acid had a significant effect on the fungal community structure of six years planting soil, while it had no significant effect on one-year planting soil. The concentration of humic acid both had a significant effect on the fungi community structure of the two planting soils. Effects of humic acid on soil fungi community structure at each culture time were as follows: humic acids significantly changed the fungi community structures of one-year planting soil at 94 d and 193 d, and of six years planting soil at 193 d. Also, the concentration of humic acids had significant effects on the fungi community structure of the two planting soils during the whole culture process. Humic acid also significantly changed the relative abundance of some fungi at the genus level. The effect of humic acid on soil fungal function can be mainly attributed to its significant alteration of the compositions of fungal functional trophic types in the two planting soils. It was also observed that the relative abundance of plant pathogens in soil decreased significantly with an increase in the concentration of humic acid. Spearman correlation analysis further detected that the relative abundances of Fusarium spp. and Rhizoctonia spp. were significantly negatively correlated with the concentration of humic acid, while the relative abundance of Penicillium spp. was significantly positively correlated. The correlation coefficients were -0.270, -0.138, and 0.172, respectively. 【Conclusion】The appropriate concentration of specific humic acid could significantly change the soil fungi community structure and functional trophic composition in peanut soils, especially in reducing the relative abundance of plant pathogens. Results of this study could provide a direct theoretical basis for expanding the application of the ecological function of humic acid, and provide a new perspective for researching and developing efficient green prevention and control technology of soil-borne diseases.

    Reference
    Related
    Cited by
Get Citation

WEI Shiping, WU Meng, LI Pengfa, LIU Jia, LI Guilong, LIU Kai, LIU Ming, LI Zhongpei. Effects of Humic Acid on Fungal Community Structure in a Peanut-continuous Cropping Soil[J]. Acta Pedologica Sinica,2023,60(3):846-856.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 05,2021
  • Revised:February 14,2022
  • Adopted:April 22,2022
  • Online: May 09,2022
  • Published: May 28,2023