Effects of Top Soil Structure on Runoff and Sediment Yield of Red Soil Slope Cropland
CSTR:
Author:
Clc Number:

S157.1

Fund Project:

Supported by the National Natural Science Foundation of China (Nos.41877084,41501287), and the Natural Science Foundation of Hunan Province (2022JJ30389) and Hunan Students innovation and entrepreneurship training program (No.S202110542121)

  • Article
  • | |
  • Metrics
  • |
  • Reference [35]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    【Objective】 Based on the current situation and severity of soil and water loss, it is vital to investigate the nature and extent of surface structure degradation of slope farmland and long-duration rainfall characteristics in the red soil region of southern China.【Method】 The method of long-term rainfall simulation were adopted to test the effects of topsoil structure and rainfall intensity on rainfall redistribution, runoff and sediment yield. In this paper, three rainfall intensities, 30 mm·h-1, 60 mm·h-1 and 90 mm·h-1, respectively, and three cultivation depths, 10 cm, 20 cm and 30 cm, respectively, were set to study the effects of tillage lager depth and rainfall intensity on surface flow, subsurface flow, soil loss rate and erosion pattern.【Result】 The results showed that:(1) The topsoil structure significantly changed the redistribution process of runoff. Higher tillage layer depth can mitigate the effects of rainfall intensity, reduce the surface flow coefficient, and increase subsurface flow. Under the condition of 60 mm·h-1 and 90 mm·h-1 rainfall intensity, the average surface flow coefficient decreased in the sequence of 70.5% (TLD10 cm), 62.9% (TLD20 cm), and 56.8% (TLD30 cm), and the average subsurface flow ratio increased in the sequence of 7.1% (TLD10 cm), 12.3% (TLD20 cm), and 18.1% (TLD30 cm). (2) The soil loss rate was enhanced with the increase in rainfall intensity but decreased with the depth of the tillage layer. Under 60 mm·h-1 rainfall intensity, the peak soil loss rate of 10 cm, 20 cm and 30 cm tillage depth were 35.1, 25.6 and 20.5 g·m-2 min-1, respectively. For 90 mm·h-1 rainfall intensity, these values were 68.7, 55.8 and 48.4 g·m-2 min-1, respectively. (3) Rainfall intensity and topsoil structure significantly affect the final slope erosion forms. With the increase of tillage layer depth, the erosion degree decreased significantly. Under the condition of 30 mm·h-1 rainfall intensity, the surface of the soil was relatively intact, and the soil erosion type was splash erosion. Also, under the condition of 60 mm·h-1 rainfall intensity, the soil erosion was all sheet flow erosion, under 10 cm and 20 cm tillage depth, spot erosion appeared in the lower part of the slope, and the soil erosion degree was lower for sheet flow erosion at 30 cm tillage depth. For the 90 mm·h-1 rainfall intensity, rill erosion appeared on the slope while at 10 cm tillage depth, rill erosion was well developed. In addition, at 20 cm tillage layer depth, rill erosion development was significant while at 30 cm tillage depth, slope erosion was mainly sheet flow erosion.【Conclusion】 The top soil structure can significantly change the relationship between rainfall and runoff. Higher tillage layer depth can reduce surface erosion, promote the deep infiltration of soil moisture, and increase the soil's deep-water holding capacity. Also, this research can serve as a reference for the rational layout of topsoil structure, improvement of rainfall utilization rate and enhancement of soil erosion resistance in the southern red soil area.

    Reference
    [1] National Development and Reform Commission, Ministry of Water Resources of the Peoplexs Republic of China. The "13th Five-Year Plan"special construction plan for the comprehensive treatment of soil erosion on slope arable land in China[Z]. 2017.[国家发展和改革委员会、中华人民共和国水利部. 全国坡耕地水土流失综合治理"十三五"专项建设方案[Z]. 2017.]
    [2] Reganold J P, Elliott L F, Unger Y L. Long-term effects of organic and conventional farming on soil erosion[J]. Nature, 1987, 330(6146):370-372.
    [3] Yang Y H, Zhao S W, Lei T W, et al. Tillage on soil infiltration under simulated rainfall conditions[J]. Acta Ecologica Sinica, 2006, 26(5):1624-1630. [杨永辉, 赵世伟, 雷廷武, 等. 耕作对土壤入渗性能的影响[J]. 生态学报, 2006, 26(5):1624-1630.]
    [4] Kasteel R, Pütz T, Vereecken H. An experimental and numerical study on flow and transport in a field soil using zero-tension lysimeters and suction plates[J]. European Journal of Soil Science, 2007, 58(3):632-645.
    [5] An J, Yin X L, Li G H, et al. Interactive influence of raindrop impact and seepage on soil erosion process within contour ridge system[J]. Journal of Soil and Water Conservation, 2021, 35(1):50-55, 64. [安娟, 殷小琳, 李国会, 等. 雨滴打击与壤中流交互作用对横坡垄作坡面侵蚀过程的影响[J]. 水土保持学报, 2021, 35(1):50-55, 64.]
    [6] Li J Z, Pei T F, Niu L H, et al. Simulation and model of interflow on hillslope of forest catchment[J]. Scientia Silvae Sinicae, 1999, 35(4):2-8. [李金中, 裴铁璠, 牛丽华, 等. 森林流域坡地壤中流模型与模拟研究[J]. 林业科学, 1999, 35(4):2-8.]
    [7] Xie S H, Tu A G, Mo M H, et al. Analysis on the characteristic of interflow production processes on red soil slopes in the case of natural rainfall events[J]. Advances in Water Science, 2015, 26(4):526-534. [谢颂华, 涂安国, 莫明浩, 等. 自然降雨事件下红壤坡地壤中流产流过程特征分析[J]. 水科学进展, 2015, 26(4):526-534.]
    [8] Li G F, Yang R X, Xie F Q, et al. Slope soil erosion characteristic of lateritic red soil under different land use types[J]. Journal of Soil and Water Conservation, 2020, 34(2):101-107, 230. [李桂芳, 杨任翔, 谢福倩, 等. 不同土地利用方式下赤红壤坡面土壤侵蚀特征[J]. 水土保持学报, 2020, 34(2):101-107, 230.]
    [9] Pu J, Shi D M, Lou Y B, et al. Effect of different tillage depth on soil properties of ploughing layer in slope cultivated land of red soil[J]. Journal of Soil and Water Conservation, 2019, 33(5):8-14. [蒲境, 史东梅, 娄义宝, 等. 不同耕作深度对红壤坡耕地耕层土壤特性的影响[J]. 水土保持学报, 2019, 33(5):8-14.]
    [10] Song G, Shi D M, Zhu H Y, et al. Effects of tillage measures on quality of cultivated-layer in red soil slope farmland[J]. Acta Pedologica Sinica, 2020, 57(3):610-622. [宋鸽, 史东梅, 朱红业, 等. 不同耕作措施对红壤坡耕地耕层质量的影响[J]. 土壤学报, 2020, 57(3):610-622.]
    [11] Chen P Y, Ma L, Xue M J, et al. Characteristics of soil aggregates with different particle sizes and their quantitative relationship with slope erosion in rocky mountain area of Northern China[J]. Journal of Beijing Forestry University, 2018, 40(8):64-71. [陈佩岩, 马岚, 薛孟君, 等. 华北土石山区不同粒径土壤团聚体特征及其与坡面侵蚀定量关系[J]. 北京林业大学学报, 2018, 40(8):64-71.]
    [12] Su Z A, Xiong D H, Zhang J H, et al. Research progress of soil erosion of purple soil slope farmland and its prevention and control measures[J]. Soil and Water Conservation in China, 2018(2):42-47, 69. [苏正安, 熊东红, 张建辉, 等. 紫色土坡耕地土壤侵蚀及其防治措施研究进展[J]. 中国水土保持, 2018(2):42-47, 69.]
    [13] Li F C, Hua X Y, Huang Q. Effects of tillage depth on tillage erosion by rotary cultivator plough on the steep land in purple soil[J]. Research of Soil and Water Conservation, 2016, 23(4):1-5. [李富程, 花小叶, 黄强. 耕作深度对紫色土坡地旋耕机耕作侵蚀的影响[J]. 水土保持研究, 2016, 23(4):1-5.]
    [14] Zhang R, Gou X M, Zhao Y Z, et al. Influence of soil erosion on soil water capacity in the black soil area of northeast China[J]. Journal of Soil and Water Conservation, 2015, 29(1):62-65. [张瑞, 苟晓敏, 赵玉珍, 等. 东北黑土区土壤侵蚀对土壤持水性的影响[J]. 水土保持学报, 2015, 29(1):62-65.]
    [15] Ji H Y, Shao M A, Jia X X. Impact of layered soil structure on infiltration and erosion processes[J]. Chinese Journal of Soil Science, 2018, 49(2):441-446. [吉恒莹, 邵明安, 贾小旭. 土壤剖面结构特征对坡面产流产沙过程的影响[J]. 土壤通报, 2018, 49(2):441-446.]
    [16] Xu Q. The delimitation of Meiyu period in the lower reaches of Yangtze-Huaihe River and their evolving characteristics for 46 recent years[J]. Scientia Meteorologica Sinica, 1998, 18(4):316-329. [徐群. 近46年江淮下游梅雨期的划分和演变特征[J]. 气象科学, 1998, 18(4):316-329.]
    [17] Han R Q, Chen L J, Li W J, et al. The spatial and temporal characteristics of China continuous cold rainy weather and south cold damage from February to may[J]. Journal of Applied Meteorological Science, 2009, 20(3):312-320. [韩荣青, 陈丽娟, 李维京, 等. 2-5月我国低温连阴雨和南方冷害时空特征[J]. 应用气象学报, 2009, 20(3):312-320.]
    [18] An W T, Song X M, Jiang Q, et al. Research progress on response mechanism of slope soil erosion and its hydrodynamic characteristics[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2020, 41(4):61-66. [安文涛, 宋晓敏, 蒋谦, 等. 坡面土壤侵蚀响应机制及其水动力学特征研究进展[J]. 华北水利水电大学学报(自然科学版), 2020, 41(4):61-66.]
    [19] Liu W R, Zheng J Y, Luo Y, et al. Effects of different tillage layer structures on soil compaction and soil water content[J]. Journal of Maize Sciences, 2013, 21(6):76-80. [刘武仁, 郑金玉, 罗洋, 等. 不同耕层构造对土壤硬度和含水量的影响[J]. 玉米科学, 2013, 21(6):76-80.]
    [20] Lu P, Wang L H, Wu F Q. Effect of soil crust strength on erosion under different rainfall intensity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8):141-146. [路培, 王林华, 吴发启. 不同降雨强度下土壤结皮强度对侵蚀的影响[J]. 农业工程学报, 2017, 33(8):141-146.]
    [21] Xu Q X, Wang T W, Li Z X, et al. Characteristics of interflow in purple soil of hillslope[J]. Advances in Water Science, 2010, 21(2):229-234. [徐勤学, 王天巍, 李朝霞, 等. 紫色土坡地壤中流特征[J]. 水科学进展, 2010, 21(2):229-234.]
    [22] Xiao X, Wu H W, Li X Y. Research progress and prospects of subsurface flow[J]. Journal of Arid Meteorology, 2016, 34(3):391-402. [肖雄, 吴华武, 李小雁. 壤中流研究进展与展望[J]. 干旱气象, 2016, 34(3):391-402.]
    [23] Gao J H, Zhang C Z. The effects of different conservation tillage on soil physical structures of dry farmland in the Loess Plateau[J]. Agricultural Research in the Arid Areas, 2010, 28(4):192-196. [高建华, 张承中. 不同保护性耕作措施对黄土高原旱作农田土壤物理结构的影响[J]. 干旱地区农业研究, 2010, 28(4):192-196.]
    [24] Zhang G H, Yang Y, Liu Y N, et al. Advances and prospects of soil erosion research in the black soil region of northeast China[J]. Journal of Soil and Water Conservation, 2022, 36(2):1-12. [张光辉, 杨扬, 刘瑛娜, 等. 东北黑土区土壤侵蚀研究进展与展望[J]. 水土保持学报, 2022, 36(2):1-12.]
    [25] Zheng F L. Study on interrill erosion and rill erosion on slope farmland of loess area[J]. Acta Pedologica Sinica, 1998, 35(1):95-103. [郑粉莉. 黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究[J]. 土壤学报, 1998, 35(1):95-103.]
    [26] Li J L, Cai Q G, Sun L Y, et al. Reviewing on factors and critical conditions of rill erosion[J]. Progress in Geography, 2010, 29(11):1319-1325. [李君兰, 蔡强国, 孙莉英, 等. 细沟侵蚀影响因素和临界条件研究进展[J]. 地理科学进展, 2010, 29(11):1319-1325.]
    [27] Hao H X, Guo Z L, Wang X Z, et al. Rill erosion process on red soil slope under interaction of rainfall and scouring flow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8):134-140. [郝好鑫, 郭忠录, 王先舟, 等. 降雨和径流条件下红壤坡面细沟侵蚀过程[J]. 农业工程学报, 2017, 33(8):134-140.]
    [28] Jiang Y L, Zheng F L, Wen L L, et al. An experimental study on the impacts of rainfall and inflow on hillslope soil erosion in typical black soil regions[J]. Acta Ecologica Sinica, 2017, 37(24):8207-8215. [姜义亮, 郑粉莉, 温磊磊, 等. 降雨和汇流对黑土区坡面土壤侵蚀的影响试验研究[J]. 生态学报, 2017, 37(24):8207-8215.]
    [29] Ma J L, Xu H H, Wang B, et al. Effect of soil physical crust on runoff and sediment yield on sloping farmland of the Loess Plateau[J]. Journal of Soil and Water Conservation, 2022, 36(1):45-49. [马金龙, 许欢欢, 王兵, 等. 黄土高原坡耕地土壤物理结皮对坡面产流产沙过程的影响[J]. 水土保持学报, 2022, 36(1):45-49.]
    [30] Huang S S, Zhong Y J, Huang Q R, et al. Effects of tillage depths and fertilizing patterns on soil physical-chemical properties and crop yield in red soil slop field[J]. Soil and Fertilizer Sciences in China, 2020(4):72-83. [黄尚书, 钟义军, 黄欠如, 等. 耕作深度及培肥方式对红壤坡耕地土壤理化性质及作物产量的影响[J]. 中国土壤与肥料, 2020(4):72-83.]
    [31] Zhang L N, Evans A, Zhang L Y, et al. Effects of tillage methods on the physical characteristics of red soil of upland[J]. Research of Soil and Water Conservation, 2018, 25(3):46-50. [张丽娜, Asenso Evans, 张陆勇, 等. 耕作方式对旱地红壤物理特性的影响[J]. 水土保持研究, 2018, 25(3):46-50.]
    [32] Wang Q J, Liu F, Jiao F, et al. Effect of deep tillage on water characteristics in black soil[J]. Chinese Journal of Soil Science, 2018, 49(4):942-948. [王秋菊, 刘峰, 焦峰, 等. 深耕对黑土水分特征及动态变化影响[J]. 土壤通报, 2018, 49(4):942-948.]
    [33] Tong W J, Deng X P, Xu Z L, et al. Effect of plowing depth on soil physical characteristics and spatial distribution of root system of flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11):1464-1472. [童文杰, 邓小鹏, 徐照丽, 等. 不同耕作深度对土壤物理性状及烤烟根系空间分布特征的影响[J]. 中国生态农业学报, 2016, 24(11):1464-1472.]
    [34] Hu J M, Chen S N, Wei X H, et al. Effects of tillage model on healthy plough layer structure and its development trends[J]. Journal of Agricultural Resources and Environment, 2018, 35(2):95-103. [胡钧铭, 陈胜男, 韦翔华, 等. 耕作对健康耕层结构的影响及发展趋势[J]. 农业资源与环境学报, 2018, 35(2):95-103.]
    [35] Su Y J, Wang Y J, Zhang Y L, et al. Effects of different tillage methods on tea garden soil physical characteristics and tea yield[J]. Chinese Journal of Applied Ecology, 2015, 26(12):3723-3729. [苏有健, 王烨军, 张永利, 等. 不同耕作方式对茶园土壤物理性状及茶叶产量的影响[J]. 应用生态学报, 2015, 26(12):3723-3729.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Ziwei, ZHAO Wenjun, LI Qi, MA Yichun, TIAN Liang, YANG Guangyong, LI Zhongwu, LIU Yaojun. Effects of Top Soil Structure on Runoff and Sediment Yield of Red Soil Slope Cropland[J]. Acta Pedologica Sinica,2024,61(2):434-444.

Copy
Share
Article Metrics
  • Abstract:324
  • PDF: 1459
  • HTML: 673
  • Cited by: 0
History
  • Received:May 28,2022
  • Revised:November 24,2022
  • Adopted:February 13,2023
  • Online: April 11,2023
  • Published: March 15,2024
Article QR Code