Particle Size Distribution Characteristics of the Rare Earth Elements in Sediment from Different Shapes of River Valleys
CSTR:
Author:
Fund Project:

Supported by the National Natural Science Foundation of China(No. 42077068)

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    ObjectiveRare earth elements(REE) are one of the most important tracers in soil erosion study. Understanding the content variation of REEs alongside particle size ranges is significant to accurately quantify soil erosion rates.MethodBased on the REE contents in different particle size ranges(< 1, 1-10, 10-50, 50-250 and 250-1000 μm) of soil/sediment samples measured by Samonova et al.(2020), this study analyzed the effects of valley morphology, landforms, erosional and depositional areas on the contents and enrichment coefficient of REE in soil/sediment at the left bank of the Protva River in Russia. Landform types including hillslope, gully slope/wall, valley bottom and alluvial fan, were separately selected from a "U" and a "V" shape valley, respectively. These four landforms were further classified into erosional (i.e., hillslope and gully slope/wall) and depositional areas (i.e., valley bottom and alluvial fan).ResultThe results showed that: (1) The contents of light rare earth elements (LREE), heavy rare earth elements (HREE) and total rare earth elements (ΣREE) were all decreased with the increase of particle size ranges under the four landform types of "U" and "V" shape valleys. Under the condition of the same landform types, the contents of LREE, HREE and ΣREE in fine particles (< 50 μm) of the "U" shaped valley were 14.6%-24.7%, 10.0%-33.5% and 14.2%-21.1% lower than those of the "V" shaped valley, respectively. (2) Both LREE and HREE were enriched in fine particles at all landform types for both "U" and "V" shape valleys. Particularly for the "V" shape valley, LREE and HREE were significantly enriched in < 10 μm particles. (3) Comparing the erosional and depositional areas, the enrichment degree of LREE and HREE in the fine particles of the depositional areas in both "U" and "V" shape valleys was significantly (P < 0.05) higher than that of the erosional area.ConclusionAccordingly, REE were enriched in fine particles regardless of river valley shapes, landforms, and erosional or depositional areas. However, both valley shape and erosion-deposition processes had important impacts on the REE content variation in different particle size ranges.

    Reference
    [1] Kabata-Pendias A. Trace elements in soils and plants[M]. 4th ed. Boca Raton, Florida: CRC Press, 2000.
    [2] Tian J L, Peng Y L. Soil geochemistry in the Loess Plateau[M]. Beijing: Science Press, 1994: 73-87. 田均良, 彭译林. 黄土高原土壤地球化学[M]. 北京: 科学出版社, 1994: 73-87.
    [3] Shi H, Tian J L, Liu P L, et al. Study on sediment source in small watershed by tracer method[J]. Scientia Sinica(Technologica), 1996, 26(5): 474-480. 石辉, 田均良, 刘普灵, 等. 利用REE示踪法研究小流域泥沙来源[J]. 中国科学(技术科学), 1996, 26(5): 474-480.
    [4] Song W, Liu P L, Yang M Y, et al. Using REE tracers to measure sheet erosion changing to rill erosion[J]. Journal of Rare Earths, 2003, 21(5): 587-590, 500.
    [5] Zhang X C, Nearing M A, Garbrecht J D. Gaining insights into interrill erosion processes using rare earth element tracers[J]. Geoderma, 2017, 299: 63-72.
    [6] Zhang X C, Liu G, Zheng F L. Understanding erosion processes using rare earth element tracers in a preformed interrill-rill system[J]. Science of the Total Environment, 2018, 625: 920-927.
    [7] Mahler B J, Bennett P C, Zimmerman M. Lanthanide-labeled clay: A new method for tracing sediment transport in Karst[J]. Groundwater, 1998, 36(5): 835-843.
    [8] Liu G, Xiao H, Liu P L, et al. An improved method for tracing soil erosion using rare earth elements[J]. Journal of Soils and Sediments, 2016, 16(5): 1670-1679.
    [9] Li X J, et al. Grain-size-dependent geochemical characteristics of Middle and Upper Pleistocene loess sequences from the Junggar Basin: Implications for the provenance of Chinese eolian deposits[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109458.
    [10] Li Y Q, Wu P T, Liu P L, et al. Simulation experiments to study soil erosion by REE tracer method[J]. Research of Soil and Water Conservation, 1997, 4(2): 26-33. 李雅琦, 吴普特, 刘普灵, 等. REE示踪法研究土壤侵蚀的室内模拟试验[J]. 水土保持研究, 1997, 4(2): 26-33.
    [11] Zhu Z Z, Liu C Q, Wang Z L, et al. Rare earth element for tracing the source of suspended particulate matter of Lake Chaohu[J]. Journal of Lake Sciences, 2006, 18(3): 267-272. 朱兆洲, 刘丛强, 王中良, 等. 巢湖悬浮物中稀土元素(REE)的物源精确示踪作用[J]. 湖泊科学, 2006, 18(3): 267-272.
    [12] Tang Z Q, Liu G, Xu W N. REE tracing method and application in soil erosion[J]. Journal of the Chinese Society of Rare Earths, 2011, 29(5): 515-522. 汤振权, 刘刚, 许文年. 稀土元素示踪技术及其在土壤侵蚀研究中的应用[J]. 中国稀土学报, 2011, 29(5): 515-522.
    [13] Lei S, Wei X P. Quantitative tracing of sediment sources in small watersheds in southwestern Karst depressions by composite fingerprinting[J]. Research of Soil and Water Conservation, 2021, 28(1): 44-49. 雷珊, 魏兴萍. 复合指纹法定量示踪西南岩溶洼地小流域泥沙来源[J]. 水土保持研究, 2021, 28(1): 44-49.
    [14] Wang X, Shang B X, Li Z B, et al. Evolution of rill erosion by rare earth element tracer method[C]. China Association for Science and Technology, 2007, 1585-1589. 王瑄, 尚佰晓, 李占斌, 等. 利用REE示踪法研究细沟侵蚀的演变过程[C]. 中国科学技术协会, 2007, 1585-1589.
    [15] Xiao H, Liu G, Xu W N, et al. Using REE to trace sediment source from simulated watershed in Three Gorges reservoir region[J]. Journal of Soil and Water Conservation, 2014, 28(1): 47-52. 肖海, 刘刚, 许文年, 等. 利用稀土元素示踪三峡库区小流域模型泥沙来源[J]. 水土保持学报, 2014, 28(1): 47-52.
    [16] Li B, Sun G H, Zhong H X, et al. Rare earth element characteristics of surface sediments in the Fujian coastal area and their implications for provenance[J]. Marine Geology Frontiers, 2017, 33(8): 47-56. 李波, 孙桂华, 钟和贤, 等. 福建近岸海域表层沉积物稀土元素地球化学特征及其物源指示意义[J]. 海洋地质前沿, 2017, 33(8): 47-56.
    [17] Liu N N, Wang H B, Zuo H J, et al. Geochemical analysis of different particle sizes on the surface of sand and gravel[J]. Environmental Science & Technology, 2020, 43(2): 21-26. 刘娜娜, 王海兵, 左合君, 等. 砂砾质地表不同粒径颗粒地球化学特征分析[J]. 环境科学与技术, 2020, 43(2): 21-26.
    [18] Li Y, Li X S, Han Z Y, et al. The distribution of REE in different particle size fractions of loess and restraining factors[J]. Acta Pedologica Sinica, 2016, 53(4): 972-984. 李洋, 李徐生, 韩志勇, 等. 黄土不同粒级稀土元素分布特征及其制约因素[J]. 土壤学报, 2016, 53(4): 972-984.
    [19] Wu K K, Liu S F, Kandasamy S, et al. Grain-size effect on rare earth elements in Pahang River and Kelantan River, Peninsular Malaysia: Implications for sediment provenance in the southern South China Sea[J]. Continental Shelf Research, 2019, 189: 103977.
    [20] Xiao H, Liu G, Xu W N, et al. Effects of soil particle composition on REE adsorption capacity and erosion tracing precision[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(5): 627-635. 肖海, 刘刚, 许文年, 等. 土壤颗粒组成对REE吸附量及侵蚀示踪精度的影响[J]. 中国稀土学报, 2013, 31(5): 627-635.
    [21] Wu W X. Rare earth element tracer method to explore the turnover path of soil aggregates in the process of splash erosion[D]. Wuhan: Huazhong Agricultural University, 2021. 吴文枭. 稀土元素示踪法探究团聚体在溅蚀过程中的周转路径[D]. 武汉: 华中农业大学, 2021.
    [22] Chen X L, Song Y G, Li J C, et al. Size-differentiated REE characteristics and environmental significance of aeolian sediments in the Ili Basin of Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2017, 143: 30-38.
    [23] Xiao H. Quantitative monitoring generation and development process of ephemeral gully erosion on hillslope using ree[D]. Yangling, Shaanxi: Northwest A&F University, 2017. 肖海. 稀土元素定量监测坡面浅沟产生及发育过程[D]. 陕西杨凌: 西北农林科技大学, 2017.
    [24] Zhang J, Meng X W, Fang X S, et al. Grain-size-dependent decoupling of REE and 143Nd/144Nd of the Yellow River sediments: Controlled by detrital minerals[J]. Acta Mineralogica Sinica, 2022, 42(5): 618-630. 张俊, 孟宪伟, 方习生, 等. 黄河沉积物REE和143Nd/144Nd的粒度解耦: 碎屑矿物制约[J]. 矿物学报, 2022, 42(5): 618-630.
    [25] Wang J Y, Zhang F H. Distribution of soil aggregates and aggregate-associated organic carbon from typical halophyte community in arid region[J]. Acta Ecologica Sinica, 2016, 36(3): 600-607. 王静娅, 张凤华. 干旱区典型盐生植物群落土壤团聚体组成及有机碳分布[J]. 生态学报, 2016, 36(3): 600-607.
    [26] Li Q, Qin F, Ji H B, et al. Geochemical characteristics of the rare-earth elements in the gold mine soil in the upstream area of the Miyun reservoir, Beijing[J]. Earth and Environment, 2014, 42(6): 733-741. 李倩, 秦飞, 季宏兵, 等. 北京市密云水库上游金矿区土壤稀土元素的地球化学特征[J]. 地球与环境, 2014, 42(6): 733-741.
    [27] Zhang L J, Li X S, Li D C, et al. Rare earth elements distribution and its correlation with macro elements and particle-size of basalt-derived soils in Leizhou peninsula[J]. Acta Pedologica Sinica, 2011, 48(1): 1-9. 张立娟, 李徐生, 李德成, 等. 雷州半岛玄武岩母质土壤剖面稀土元素分布及其与常量元素、粒度的关系[J]. 土壤学报, 2011, 48(1): 1-9.
    [28] Bai R R. Study on the accuracy of REE tracing soil erosion and sediment sources[D]. Yangling, Shaanxi: Northwest A&F University, 2022. 白茹茹. REE示踪土壤侵蚀与泥沙来源的准确性研究[D]. 陕西杨凌: 西北农林科技大学, 2022.
    [29] Samonova О A, Aseyeva E N, Chernitsova O V. Data on rare earth elements in different particle size fractions of topsoil for two small erosional landforms in central European Russia[J]. Data in Brief, 2020, 30: 105450.
    [30] Panin A, Fuzeina Y, Karevskaya I, et al. Mid-Holocene gullying indicating extreme hydroclimatic events in the centre of the Russian Plain[J]. Geographia Polonica, 2011: 95-115.
    [31] Arinushkina E. Handbook for chemical analysis of soils[M]. Moscow in Russian: Chimiya Publishing House, 1992.
    [32] Huang M, Shi X F, Yu M, et al. Distribution and enrichment principles of rare earth elements in surface sediments from the Central Indian Ocean Basin[J]. Geochimica, 2022, 51(1): 70-82. 黄牧, 石学法, 于淼, 等. 中印度洋海盆表层沉积物稀土元素分布特征及富集规律[J]. 地球化学, 2022, 51(1): 70-82.
    [33] Yang C Q. A review of the controversy over the question of Moulin and pothole[J]. Tropical Geography, 2001, 21(1): 86-93, 99. 杨超群. 冰臼与壶穴之争述评[J]. 热带地理, 2001, 21(1): 86-93, 99.
    [34] Li X S, Han Z Y, Yang D Y, et al. Ree geochemistry of Xiashu loess in Zhenjiang, Jiangsu Province[J]. Acta Pedologica Sinica, 2006, 43(1): 1-7. 李徐生, 韩志勇, 杨达源, 等. 镇江下蜀黄土的稀土元素地球化学特征研究[J]. 土壤学报, 2006, 43(1): 1-7.
    [35] Shi Y, Gao J H, Liu Q, et al. Fine sediment transport in north-central of Yellow Sea: The role of continental shelf circulation[J]. Acta Oceanologica Sinica, 2019, 41(4): 53-63. 石勇, 高建华, 刘强, 等. 陆架环流作用下的北黄海中北部细颗粒物质输运[J]. 海洋学报, 2019, 41(4): 53-63.
    [36] Sutherland R A, Wan Y, Lee C T, et al. Aggregate enrichment ratios for splash and wash transported sediment from an Oxisol[J]. Catena, 1996, 26(3/4): 187-208.
    [37] Wang H B, Chen F H, Zhang J W. Environmental significance of grain size of loess-paleosol sequence in western part of Chinese loess plateau[J]. Journal of Desert Research, 2002, 22(1): 21-26. 汪海斌, 陈发虎, 张家武. 黄土高原西部地区黄土粒度的环境指示意义[J]. 中国沙漠, 2002, 22(1): 21-26.
    [38] Mei X, Zhang X H, Li R H. REE of DLC70-3 core sediments from mud areas in the central south Yellow Sea and its environmental significance[J]. Geological Science and Technology Information, 2011, 30(4): 21-28. 梅西, 张训华, 李日辉. 南黄海中部泥质沉积区DLC70-3孔稀土元素及环境意义[J]. 地质科技情报, 2011, 30(4): 21-28.
    [39] Huang C M, Wang C S. Geochemical features of rare earth elements in process of rock weathering and soil formation[J]. Chinese Rare Earths, 2002, 23(5): 46-49. 黄成敏, 王成善. 风化成土过程中稀土元素地球化学特征[J]. 稀土, 2002, 23(5): 46-49.
    [40] Ma Y J, Huo R K, Xu Z F, et al. Ree behavior and influence factors during chemical weathering[J]. Advance in Earth Sciences, 2004, 19(1): 87-94. 马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-94.
    [41] Sun W G, Gan Z T, Sun Z G, et al. Spatial distribution characteristics of Fe and Mn contents in the new-born coastal marshes in the Yellow River Estuary[J]. Environmental Science, 2013, 34(11): 4411-4419. 孙文广, 甘卓亭, 孙志高, 等. 黄河口新生湿地土壤Fe和Mn元素的空间分布特征[J]. 环境科学, 2013, 34(11): 4411-4419.
    [42] Ding Z H, Liu J L, Li L Q, et al. Distribution of mercury in surficial sediments from main mangrove wetlans of China[J]. Environmental Science, 2009, 30(8): 2210-2215. 丁振华, 刘金铃, 李柳强, 等. 中国主要红树林湿地沉积物中汞的分布特征[J]. 环境科学, 2009, 30(8): 2210-2215.
    [43] Zhang H C, Zhang W X, Chang F Q, et al. Geochemical fractionation of rare earth elements in Lacustrine Deposits from Qaidam Basin[J]. Science in China(Earth Sciences), 2009, 39(8): 1160-1169. 张虎才, 张文翔, 常凤琴, 等. 稀土元素在湖相沉积中的地球化学分异——以柴达木盆地贝壳堤剖面为例[J]. 中国科学(地球科学), 2009, 39(8): 1160-1169.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

SHANG Yueting, ZHANG Jiaqiong, BAI Ruru. Particle Size Distribution Characteristics of the Rare Earth Elements in Sediment from Different Shapes of River Valleys[J]. Acta Pedologica Sinica,2024,61(3):746-756.

Copy
Share
Article Metrics
  • Abstract:202
  • PDF: 1589
  • HTML: 943
  • Cited by: 0
History
  • Received:July 07,2022
  • Revised:April 26,2023
  • Adopted:August 21,2023
  • Online: August 28,2023
  • Published: May 15,2024
Article QR Code