Abstract:【Objective】 Paddy fields are important anthropogenic sources of atmospheric methane. This study is to investigate the methane production and oxidation potentials and their responses to temperature under different rice-based land use types. 【Method】 Soil samples from four typical land use types in Jurong City, Jiangsu Province, including conventional rice area(CR), rice-crayfish rice area(R-CR), rice-crayfish crayfish area(R-CC) and conventional crayfish area(CC) were collected. Laboratory culture experiments were conducted at 5℃, 15℃, 25℃ and 35℃ for 30 days. 【Result】 The results showed that land use transformation had significant effects on methane production potential and methane oxidation potential. The methane production potential was 1.14 μg·g-1·d-1 in the R-CC area, 0.33 μg·g-1·d-1 in the CC area, 0.25 μg·g-1·d-1 in the R-CR area and 0.17 μg·g-1·d-1 in CR area. Also, the values of methane oxidation potential were 1.38 μg·g-1·d-1 in the CR area, 1.01 μg·g-1·d-1 in the CC area, 1.00 μg·g-1·d-1 in the R-CR area and 0.71 μg·g-1·d-1 R-CC area. The methane production potential increased exponentially with the increase in temperature. The average values of methane production potential at 5℃, 15℃, 25℃ and 35℃ were 0.13, 0.26, 0.55 and 0.95 μg·g-1·d-1, respectively. However, the methane oxidation potential was sensitive only at low temperatures. Specifically, the methane oxidation potential at 15℃, 25℃ and 35℃ were significantly different from the methane oxidation potential at 5℃, while there was no significant difference between the three culture temperatures. The average values of methane oxidation potential at 5℃, 15℃, 25℃ and 35℃ are 0.71, 1.14, 1.14 and 1.11 μg·g-1·d-1, respectively.【Conclusion】 Due to differences in water management, feed and nitrogen fertilizer input, substrate and environmental factors led to differences in the activities of methanogenic bacteria and methane-oxidizing bacteria. Therefore, soils with different land use types presented different characteristics of methane production and oxidation potentials. Generally, the methane production potential was more sensitive to temperature than the methane oxidation potential. The soil methane production potential and oxidation potential were significantly affected by temperature or land use type(P < 0.01), but the interaction between the two factors only had a significant impact on soil methane production potential but not on methane oxidation potential.