Creation and Evaluation Method of Plough Layer Reconstruction Materials for “Non-Grain Production of Cultivated Land”
Author:
Affiliation:

College of Environmental and Resource Sciences, Zhejiang University

Clc Number:

Fund Project:

Research and Development Program of Zhejiang Province (2022C02022, 2022C02018); National Natural Science Foundation of China (42177008)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Economical crops like seedlings and flowers are frequently sold with soil transplantation practices, which directly leads to the soil plough layer becoming shallow or even stripped and eventually disappearing. This type of "non-grain production of cultivated land" with stripped plough layer can cause soil structure damage, nutrient imbalance, and fertility degradation, thus, it is a serious threat to the foundation of national food security and the healthy development of agriculture. The main problem with the stripped "non-grain production of cultivated land" is the lack of a high-quality plough layer. Therefore, a solution promoting the reconstruction of the high-quality plough layer to meet the fundamental needs of crops is key to replanting these soils. However, there is currently no systematic research aimed at solving this problem. 【Method】A novel plough layer reconstruction material was developed using long-lasting organic materials such as herbal peat, moss peat, rice husk biochar, sawdust biochar, active organic material vegetable corn husk, and microbial inoculants. We employed cluster and principal component analyses to identify the minimum data set of quality evaluation indicators for plough layer reconstruction materials, which was then combined with the quality index model to create a comprehensive quality evaluation system. 【Result】The result showed that the plough layer reconstruction materials with moss peat and rice husk biochar as main raw materials had higher quality and could effectively improve the fertility and compact structure of plough layer damaged soils. This material was characterized by a loose texture, bulk density of 0.1347~0.1466g·cm-3, high capillary porosity (64.83%~67.82%), strong water-holding capacity, high organic matter content (658.85~704.92g·kg-1), and high SOC recalcitrance index of 75.27%~84.71%., with a high potential for sequestration and sink enhancement. The minimum data set constructed with SOC, Labile C, HS, TN, TK, capillary porosity, and pH can be used as a quality evaluation system for plough layer reconstruction materials. Based on the above system, the optimal formulation of the plough layer reconstruction material was screened as follows: when moss peat (M) is mixed and configured with rice husk biochar (R) at mass ratios of 1:1, 2:1, 3:1, and then 10:1 with vegetable corn husk (C); ((M+R)10C1, (2M+R)10C1, and (3M+R)10C1), a high-quality ploughing layer reconstruction material can be formed. On "non-grain production of cultivated land," the application of selected plough layer reconstruction materials can dramatically lower soil bulk density and raise soil organic matter content by 177.35% to 204.31% compared to the control. Additionally, the treatment also increased the soil""s effective nutrient content and soil carbon sequestration potential. The plant height, weight, and number of spikes of wheat were higher than those in the control after the application of the plough layer reconstruction material. This resulted in the yield of wheat being 5.6 times higher than that of the control, which demonstrates the benefit of this type of material for crop growth. 【Conclusion】The indicator evaluation system established by this research can comprehensively and objectively evaluate the overall quality of plough layer reconstruction materials, and the materials created with moss peat and rice husk biochar as raw materials showed high application value in improving soil quality, increasing soil carbon sequestration capacity, and restoring crop production.

    Reference
    Related
    Cited by
Get Citation

HAO Dian, ZHOU Runhui, GAO Wenzhe, LUO Jipeng, WANG Yuanfan, LI Tingqiang. Creation and Evaluation Method of Plough Layer Reconstruction Materials for “Non-Grain Production of Cultivated Land”[J]. Acta Pedologica Sinica,2024,61(6).

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 14,2023
  • Revised:September 06,2023
  • Adopted:September 28,2023
  • Online: October 09,2023
  • Published: