Inhibition Mechanisms of Acidification Induced by Urea Application Using Organic Carbon Sources with Different Availability for Microorganisms in Ultisol
Author:
Affiliation:

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 41877102, U19A2046)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】 This study investigated the mechanism of different organic carbon (C) sources to control fertilizer nitrogen (N) transformation and its induced soil acidification. 【Method】 Four types of organic C sources (glucose, sodium benzoate, cellulose, and lignin) with different availability for microorganisms were selected for a 45-day indoor incubation experiment. It was conducted under the condition that the C/N ratio of C source and fertilizer (urea) was 40. The effects were analyzed for the combined application of organic C source and urea on N transformation and soil acidity in Ultisol. 【Result】 The results showed that intensive nitrification occurred when urea was used solely in Ultisol, resulting in a soil pH decrease of 1.17 pH units at the end of the incubation. Compared with the sole application of urea, the combined application of organic C sources and urea significantly enhanced soil respiration, and decreased soil inorganic N by 17.1%-99.4% and soil NO3--N by 46.1%-99.9%. However, these organic treatments increased soil microbial biomass N and solid organic N (non-extractable N) by 3.0%-14.8%, and increased soil pH by 0.67-3.11 pH units. These findings suggest that the combined application of organic C sources and N fertilizer promoted the immobilization of fertilizer N by soil microorganisms and soil N sequestration, thereby significantly reducing nitrification and soil acidification induced by N fertilizer. Specifically, as a labile organic C source, glucose facilitated the rapid immobilization of fertilizer N by microorganisms in the early stage and the mineralization of organic N in the later stage. It indicated that glucose could play a role in temporary storage and slow release of fertilizer N in the soil. Cellulose was less easily utilized by microorganisms and also promoted microbial immobilization of fertilizer N. Although cellulose was not as fast as glucose, it had strong immobilization capacity and high C use efficiency, which was conducive to the long-term immobilization of fertilizer N in the soil. Lignin, a resistant organic C source, weakly promoted microbial immobilization of fertilizer N but directly inhibited nitrification. The mentioned C sources regulated the N transformation process and increased the soil pH by approximately 0.6 pH units. Sodium benzoate, as a labile organic acid salt, reduced nitrification directly by inhibiting nitrification and indirectly by promoting microbial N immobilization, although the microbial immobilization of fertilizer N was significantly lower than that of glucose and cellulose. Decarboxylation of sodium benzoate rapidly consumed a substantial amount of H+ and significantly increased the soil pH by approximately 3.0 pH units. 【Conclusion】 The chemical properties of organic C sources, including the complexity of their chemical structure, microbial availability, microbial C use efficiency, and microbial toxicity, are the main factors affecting the transformation process of soil C and N, and consequent soil acidification. The findings obtained in this study provide significant theoretical support for the effective and sustainable management of soil nutrients and acidity in cropland.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 14,2023
  • Revised:February 21,2024
  • Adopted:April 10,2024
  • Online: April 12,2024
  • Published: