Mechanism of Degradation of Typical Malodorous Benzene Congeners in Soil by Activated Persulfate with Sulfidized Nano-zero-valent Iron Loaded on Biochar
Author:
Affiliation:

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences

Clc Number:

Fund Project:

Supported by the National Key Research and Development Program of China(No. 2020YFC1808601)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】The degradation of organic pollutants in soil by activated persulfate (PS) with nanoscale zero-valent iron (nZVI) or sulfidized nanoscale zero-valent iron (S-nZVI) is currently one of the research hotspots in in-situ chemical oxidation remediation technologies. Benzene, toluene, ethylbenzene, and xylene (BTEX) are typical odorous pollutants in petrochemical-contaminated sites. Thus, the discovery of remediation technologies aimed to achieve efficient removal of BTEX and the elucidation of the degradation mechanism is of great environmental significance.【Method】The study established a persulfate oxidation system using biochar-supported sulfidized nano zero-valent iron (S-nZVI@BC) as the activator, explored the degradation of BTEX under different conditions, and compared its effectiveness with other materials for PS degradation. Moreover, based on chemical probe experiments, electron paramagnetic resonance (EPR) experiments, and purge-and-trap-gas chromatography-mass spectrometry (PT-GC-MS), the degradation pathways of BTEX were indicated.【Result】The results showed that S-nZVI@BC/PS system had the best degradation efficiency on BTEX in the soil at pH = 3, S/Fe = 1/4, Fe/C = 1/2, S-nZVI@BC dosage of 0.01g•g-1soil, and PS concentration of 30 mmol•L-1. The degradation rates of benzene, toluene, ethylbenzene, and ortho-xylene in the S-nZVI@BC/PS system reached 96.7%, 98.5%, 96.9%, and 98.4% within 2 h, respectively. The S-nZVI@BC catalytic system showed the best performance among the five different catalytic systems studied in the order of PS < nZVI/PS < nZVI@BC/PS < S-nZVI/PS < S-nZVI@BC/PS. Also, S-nZVI@BC maintained good reaction activity in a wide range of pH 2-9. There were three active free radicals in the system: SO4˙-, HO˙, and O2˙-, among which SO4˙- was confirmed as the main active substance in the reaction process. Based on main free radicals and intermediates, it is indicated that BTEX may have two degradation pathways: Free radical addition and free radical hydrogen extraction reaction.【Conclusion】Sulfur modification and biochar loading effectively improved the stability of nZVI catalytic performance, and S-nZVI@BC/PS can efficiently degrade BTEX. This study provides theoretical support for the establishment of efficient degradation technology for odorous pollutants in soils.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 24,2023
  • Revised:November 29,2023
  • Adopted:January 05,2024
  • Online: January 15,2024
  • Published: