A Review of Soil 3D Prediction and Modelling Techniques
Author:
Clc Number:

S159

Fund Project:

Supported by the Cropland Degradation Monitoring (No. NK2022180104) and the National Natural Science Foundation of China (No. 41971068)

  • Article
  • | |
  • Metrics
  • |
  • Reference [87]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Soil is a complex with high heterogeneity. The early research on digital soil mapping mainly focused on the lateral variation of soil, with less consideration of the vertical variation and three-dimensional (3D) digital soil mapping. In recent years, the rapid developments of 3D geographic information technology and earth observation and detection technology have greatly promoted research on soil 3D data acquisition, 3D prediction, 3D data modeling, 3D model and visualization. In this paper, we reviewed the existing research on soil prediction and soil model construction in 3D space, to provide suggestions for the application and development of 3D digital soil mapping. We searched the Web of Science database by using 3D soil mapping, 3D GIS, 3D data model, 3D geological modeling, 3D visualization, soil spatial variability, spatial prediction, Kriging interpolation, soil-landscape analysis, depth function, machine learning, geostatistics, random simulation as keywords, and selected the key literatures for analysis based on correlation, citation rate and literature sources. We summarized the popular methodologies for soil spatial variability, 3D spatial soil prediction, soil 3D data model, and 3D model construction, and evaluated the advantages, disadvantages and application scenarios of each method. This review presents the common problems of 3D soil mapping, such as sparse soil profile data, low accuracy of 3D soil prediction, and insufficient information to create the data source for 3D soil modelling, and put forward some feasible research prospects.

    Reference
    [1] Zhu A X, Yang L, Fan N Q, et al. The review and outlook of digital soil mapping[J]. Progress in Geography, 2018, 37(1): 66-78.[朱阿兴, 杨琳, 樊乃卿, 等. 数字土壤制图研究综述与展望[J]. 地理科学进展, 2018, 37(1): 66-78.]
    [2] Li J. Study on the theory and method of mapping on small scales[J]. Acta Pedologica Sinica, 1988, 25(4): 336-348.[李锦. 小比例尺土壤制图理论和方法的研究[J]. 土壤学报, 1988, 25(4): 336-348.]
    [3] Hengl T, MacMillan R A. Predictive soil mapping with R[M]. Netherlands:Wageningen, 2019.
    [4] Zhang G L, Zhu A X, Shi Z, et al. Progress and future prospect of soil geography[J]. Progress in Geography, 2018, 37(1): 57-65.[张甘霖, 朱阿兴, 史舟, 等. 土壤地理学的进展与展望[J]. 地理科学进展, 2018, 37(1): 57-65.]
    [5] Hartemink A E, Zhang Y, Bockheim J, et al. Soil horizon variation:A review[J]. Advances in Agronomy, 2020, 160:125-185.
    [6] Parker R S. Absorption, metabolism, and transport of carotenoids[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 1996, 10(5): 542-551.
    [7] Pelletier J D, Rasmussen C. Geomorphically based predictive mapping of soil thickness in upland watersheds[J]. Water Resources Research, 2009, 45(9): w09417
    [8] Mehnatkesh A, Ayoubi S, Jalalian A, et al. Relationships between soil depth and terrain attributes in a semi arid hilly region in western Iran[J]. Journal of Mountain Science, 2013, 10(1): 163-172.
    [9] Ho M H, Chan C M. Some mechanical properties of cement stabilized Malaysian soft clay[J]. International Journal of Civil and Environmental Engineering, 2011, 5(2): 76-83.
    [10] Tye A M, Kessler H, Ambrose K, et al. Using integrated near-surface geophysical surveys to aid mapping and interpretation of geology in an alluvial landscape within a 3D soil-geology framework[J]. Near Surface Geophysics, 2011, 9(1): 15-31.
    [11] Tao H, Liao X Y, Cao H Y, et al. Research progress of three-dimensional delineation of soil pollutants at contaminated sites[J]. Acta Geographica Sinica, 2022, 77(3): 559-573.[陶欢, 廖晓勇, 曹红英, 等. 场地土壤污染物含量三维刻画的研究进展[J]. 地理学报, 2022, 77(3): 559-573.]
    [12] Song X D, Wu H Y, Liu F, et al. Three-dimensional mapping of organic carbon using piecewise depth functions in the red soil critical zone observatory[J]. Soil Science Society of America Journal, 2019, 83(3): 687-696.
    [13] Wilding L P, Drees L R. Spatial variability:A pedologist's viewpoint1[J]. Diversity of Soils in the Tropics, 1978, 34:1-12.
    [14] Song C H, Chong R J, Cheng L Z. Application of geostatistic reservoir modeling in Ai & N Oilfield, Malacca Strait, Indonesia[J]. China Offshore Oil and Gas(Geology), 2001, 15(5): 340-344, 360.[宋春华, 崇仁杰, 程立芝. 地质统计学储层建模技术在印尼马六甲AI和N油田的应用[J]. 中国海上油气(地质), 2001, 15(5): 340-344, 360.]
    [15] Duan P, Sheng Y H, Zhang S Y, et al. A 3D local RBF spatial interpolation considering anisotropy[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 632-637.[段平, 盛业华, 张思阳, 等. 顾及异向性的局部径向基函数三维空间插值[J]. 武汉大学学报(信息科学版), 2015, 40(5): 632-637.]
    [16] Burrough P A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation[J]. Journal of Soil Science, 1983, 34(3): 577-597.
    [17] Burrough P A. Multiscale sources of spatial variation in soil. II. A non-Brownian fractal model and its application in soil survey[J]. Journal of Soil Science, 1983, 34(3): 599-620.
    [18] Kravchenko A N, Boast C W, Bullock D G. Multifractal analysis of soil spatial variability[J]. Agronomy Journal, 1999, 91(6): 1033-1041.
    [19] Zhang F S, Liu Z X. Fractal theory and its application in the analysis of soil spatial variability:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1351-1358.[张法升, 刘作新. 分形理论及其在土壤空间变异研究中的应用[J]. 应用生态学报, 2011, 22(5): 1351-1358.]
    [20] Eghball B, Schepers J S, Negahban M, et al. Spatial and temporal variability of soil nitrate and corn yield[J]. Agronomy Journal, 2003, 95(2): 339-346.
    [21] Dokuchaev V V. Russian chernozem[M]. Jerusalem:Israel Program for Scientific Translations, 1967.
    [22] Jenny H. Factors of soil formation:A system of quantitative pedology[M]. North Chelmsford:Courier Corporation, 1994.
    [23] McBratney A B, Santos M L M, Minasny B. On digital soil mapping[J]. Geoderma, 2003, 117(1/2): 3-52.
    [24] Grunwald S, Vasques G M, Rivero R G. Fusion of soil and remote sensing data to model soil properties[J]. Advances in Agronomy, 2015, 131:1-109.
    [25] Knotters M, Brus D J, Voshaar J H O. A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations[J]. Geoderma, 1995, 67(3/4): 227-246.
    [26] Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression:a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.
    [27] Hengl T, Gruber S, Shrestha D P. Reduction of errors in digital terrain parameters used in soil-landscape modelling[J]. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(2): 97-112.
    [28] Lai Y R, Orton T G, Pringle M J, et al. Increment- averaged kriging:A comparison with depth-harmonized mapping of soil exchangeable sodium percentage in a cropping region of eastern Australia[J]. Geoderma, 2020, 363:114151.
    [29] Liu F, Zhang G L, Sun Y J, et al. Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape[J]. Soil Science Society of America Journal, 2013, 77(4): 1241-1253.
    [30] Kempen B, Brus D J, Stoorvogel J J. Three-dimensional mapping of soil organic matter content using soil type specific depth functions[J]. Geoderma, 2011, 162(1/2): 107-123.
    [31] Li H Y, Shi Z, Webster R, et al. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil[J]. Geoderma, 2013, 195:31-41.
    [32] Veronesi F, Corstanje R, Mayr T. Mapping soil compaction in 3D with depth functions[J]. Soil & Tillage Research, 2012, 124:111-118.
    [33] Malone B P, McBratney A B, Minasny B, et al. Mapping continuous depth functions of soil carbon storage and available water capacity[J]. Geoderma, 2009, 154(1/2): 138-152.
    [34] Zhao Y F, Li Y X, Ma P P, et al. Three dimensional changes of soil organic carbon content and its key factors in cultivated soils of Henan Province during the recent 30 years[J]. Acta Pedologica Sinica, 2023, 60(5): 1409-1420.[赵彦锋, 李怡欣, 马盼盼, 等. 近30年河南省耕地土壤有机碳的三维变化与关键因素研究[J]. 土壤学报, 2023, 60(5): 1409-1420.]
    [35] Han J C, Li X M, Sun J H, et al. Research on three dimensional spatial distribution of soil salinity in a typical field of lubotan area[J]. Journal of Natural Resources, 2014, 29(5): 847-854.[韩霁昌, 李晓明, 孙剑虹, 等. 卤泊滩典型田块土壤盐分三维空间分布研究[J]. 自然资源学报, 2014, 29(5): 847-854.]
    [36] Yun A P, Ju Z S, Hu K L, et al. Three-dimensional spatial interpolation of soil salinity based on Inverse Distance Weighting Method[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(12): 148-156.[云安萍, 鞠正山, 胡克林, 等. 基于距离反比法的土壤盐分三维空间插值研究[J]. 农业机械学报, 2015, 46(12): 148-156.]
    [37] Li H Y, Gu C J, Dan C L, et al. VRML-based virtual reality modeling of three dimensional variation of soil electrical conductivity[J]. Acta Pedologica Sinica, 2015, 52(4): 776-782.[李洪义, 顾呈剑, 但承龙, 等. 基于VRML的土壤电导率三维空间变异性虚拟现实建模研究[J]. 土壤学报, 2015, 52(4): 776-782.]
    [38] Wu Y K, Liu G M, Yang J S, et al. Interpreting method of regional soil salinity 3D distribution based on inverse distance weighting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 100-106.[吴亚坤, 刘广明, 杨劲松, 等. 基于反距离权重插值的土壤盐分三维分布解析方法[J]. 农业工程学报, 2013, 29(3): 100-106.]
    [39] Xu D, Liu C H, Cai T Y, et al. 3D spatial distribution characteristics of soil organic matter and total nitrogen in farmland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 157-163.[徐丹, 刘昌华, 蔡太义, 等. 农田土壤有机质和全氮三维空间分布特征研究[J]. 农业机械学报, 2015, 46(12): 157-163.]
    [40] Chen C, Hu K L, Li H, et al. Three-dimensional mapping of soil organic carbon by combining Kriging method with profile depth function[J]. PLoS One, 2015, 10(6): e0129038.
    [41] Zhu Q, Lin H S. Comparing ordinary Kriging and regression Kriging for soil properties in contrasting landscapes[J]. Pedosphere, 2010, 20(5): 594-606.
    [42] Zhang Y K, Ji W J, Saurette D D, et al. Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression Kriging[J]. Geoderma, 2020, 366:114253.
    [43] Hengl T, Heuvelink G B M, Rossiter D G. About regression-Kriging:From equations to case studies[J]. Computers & Geosciences, 2007, 33(10): 1301-1315.
    [44] Brus D J, Yang R M, Zhang G L. Three-dimensional geostatistical modeling of soil organic carbon:A case study in the Qilian Mountains, China[J]. Catena, 2016, 141:46-55.
    [45] Gallichand J, Buckland G D, Marcotte D, et al. Spatial interpolation of soil salinity and sodicity for a saline soil in Southern Alberta[J]. Canadian Journal of Soil Science, 1992, 72(4): 503-516.
    [46] Li S H, Zhang C M, Hu A M, et al. Building porosity model of coalbed using collocated cokriging[J]. Journal of China Coal Society, 2007, 32(9): 980-983.[李少华, 张昌民, 胡爱梅, 等. 煤储层孔隙度的协同模拟[J]. 煤炭学报, 2007, 32(9): 980-983.]
    [47] Wu S H, Li W K. Multiple-point geostatistics:Theory, application and perspective[J]. Journal of Palaeogeography, 2005, 7(1): 137-144.[吴胜和, 李文克. 多点地质统计学——理论、应用与展望[J]. 古地理学报, 2005, 7(1): 137-144.]
    [48] Matheron G. Principles of geostatistics[J]. Economic Geology, 1963, 58(8): 1246-1266.
    [49] Strebelle S. Conditional simulation of complex geological structures using multiple-point statistics[J]. Mathematical Geology, 2002, 34(1): 1-21.
    [50] Meerschman E, van Meirvenne M, van De Vijver E, et al. Mapping complex soil patterns with multiple-point geostatistics[J]. European Journal of Soil Science, 2013, 64(2): 183-191.
    [51] Zhou X Q, Shi P X, Sheil B. Knowledge-based multiple point statistics for soil stratigraphy simulation[J]. Tunnelling and Underground Space Technology, 2024, 143:105475.
    [52] Cheng Q M. Multifractal interpolation[C]. Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology, 1999:245-250.
    [53] Guo F, Ge C, Han Y. Markov chain-based geological properties modeling and its application[J]. Geography and Geo- Information Science, 2012, 28(1): 47-50.[郭飞, 葛成, 韩宇. 嵌入式马尔科夫链的地质属性建模与应用[J]. 地理与地理信息科学, 2012, 28(1): 47-50.]
    [54] Zhao Y F, Sun Z Y, Chen J. Analysis and comparison in arithmetic for Kriging interpolation and sequential Gaussian conditional simulation[J]. Journal of Geo-Information Science, 2010, 12(6): 767-776.[赵彦锋, 孙志英, 陈杰. Kriging插值和序贯高斯条件模拟算法的对比分析[J]. 地球信息科学学报, 2010, 12(6): 767-776.]
    [55] Yao R J, Yang J S, Zhao X F, et al. Three-dimensional stochastic simulation and uncertainty assessment on spatial distribution of soil salinity in coastal region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11): 91-97.[姚荣江, 杨劲松, 赵秀芳, 等. 沿海滩涂土壤盐分空间分布的三维随机模拟与不确定性评价[J]. 农业工程学报, 2010, 26(11): 91-97.]
    [56] He Y, Hu K L, Chen D L, et al. Three dimensional spatial distribution modeling of soil texture under agricultural systems using a sequence indicator simulation algorithm[J]. Computers and Electronics in Agriculture, 2010, 71:S24-S31.
    [57] He Y, Hu K L, Li W D, et al. Stochastic simulation of three-dimensional spatial distribution of soil profile textural layers in alluvial plain, North China[J]. Acta Pedologica Sinica, 2008, 45(2): 193-200.[贺勇, 胡克林, 李卫东, 等. 华北冲积平原区土壤剖面质地层次空间分布的三维随机模拟[J]. 土壤学报, 2008, 45(2): 193-200.]
    [58] Wang W P, Liu J L, Li X P. Transition probability based 3D stochastic simulation and uncertainty assessment of soil texture at field scale[J]. Soils, 2014, 46(6): 1121-1128.[王伟鹏, 刘建立, 李晓鹏. 基于转移概率的区域土壤三维随机模拟及其不确定性评价[J]. 土壤, 2014, 46(6): 1121-1128.]
    [59] Caers J, Journel A. Stochastic reservoir simulation using neural networks trained on outcrop data[C]. SPE Annual Technical Conference and Exhibition, 1998:SPE-49026-MS.
    [60] Wu L X, Shi W Z, Gold C. Spatial modeling technologies for 3D GIS and 3D GMS[J]. Geography and Geo-Information Science, 2003, 19(1): 5-11.[吴立新, 史文中, Christopher Gold. 3D GIS与3D GMS中的空间构模技术[J]. 地理与地理信息科学, 2003, 19(1): 5-11.]
    [61] Gong J Y, Cheng P G, Wang Y D. Three-dimensional modeling and application in geological exploration engineering[J]. Computers & Geosciences, 2004, 30(4): 391-404.
    [62] Li A B, Zhou L C, Lü G N. Geological information system[M]. Beijing:Science Press, 2013.[李安波, 周良辰, 闾国年. 地质信息系统[M]. 北京:科学出版社, 2013.]
    [63] Liu Y, Wang K L, Xing X Y, et al. On spatial effects in geographical analysis[J]. Acta Geographica Sinica, 2023, 78(3): 517-531.[刘瑜, 汪珂丽, 邢潇月, 等. 地理分析中的空间效应[J]. 地理学报, 2023, 78(3): 517-531.]
    [64] Liu Z, Yang W, Li M Z, et al. Three-dimensional point cloud registration method for soil surface based on kinect camera[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 144-149.[刘振, 杨玮, 李民赞, 等. 基于Kinect相机的土壤表面三维点云配准方法[J]. 农业机械学报, 2019, 50(S1): 144-149.]
    [65] Zhang T, Zhou Z F, Wang L Y, et al. A method for soil roughness measurement based on UAV point cloud data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 115-122.[张田, 周忠发, 王玲玉, 等. 基于无人机点云数据土壤粗糙度测量方法[J]. 自然资源遥感, 2023, 35(1): 115-122.]
    [66] Zhang Z W. Application of close-range photogrammetry technology and 3D laser scanning technology in slope erosion process[D]. Wuhan:Huazhong Agricultural University, 2022.[张志伟. 近景摄影测量技术和三维激光扫描技术在坡面侵蚀过程中的应用[D]. 武汉:华中农业大学, 2022.]
    [67] Grunwald S, Barak P, McSweeney K, et al. Soil landscape models at different scales portrayed in Virtual Reality Modeling Language[J]. Soil Science, 2000, 165(8): 598-615.
    [68] Santos M M L, Guenat C, Bouzelboudjen M, et al. Three-dimensional GIS cartography applied to the study of the spatial variation of soil horizons in a Swiss floodplain[J]. Geoderma, 2000, 97(3/4): 351-366.
    [69] Houlding S W. Spatial data types and structures//Houlding S W. 3D Geoscience Modeling:Computer Techniques for Geological Characterization[M]. Berlin, Heidelberg, Germany:Springer-Verlag, 1994:71-86.
    [70] Chen H H, Huang T S. A survey of construction and manipulation of octrees[J]. Computer Vision, Graphics, and Image Processing, 1988, 43(3): 409-431.
    [71] Shi W Z, Yang B S, Li Q Q. An object-oriented data model for complex objects in three-dimensional geographical information systems[J]. International Journal of Geographical Information Science, 2003, 17(5): 411-430.
    [72] Houlding S. 3D geoscience modeling:Computer techniques for geological characterization[M]. New York:Springer Science & Business Media, 2012.
    [73] Joe B. Construction of three-dimensional Delaunay triangulations using local transformations[J]. Computer Aided Geometric Design, 1991, 8(2): 123-142.
    [74] Zhou L C. Research on three-dimensional spatial data model and analysis method based on cell complex[D]. Nanjing:Nanjing Normal University, 2009.[周良辰. 基于胞腔复形的三维空间数据模型及分析方法研究[D]. 南京:南京师范大学, 2009.]
    [75] Chen X X, Wu L X, Che D F, et al. 3D modeling method of geological bodies including faults based on borehole data[J]. Coal Geology & Exploration, 2005, 33(5): 5-8.[陈学习, 吴立新, 车德福, 等. 基于钻孔数据的含断层地质体三维建模方法[J]. 煤田地质与勘探, 2005, 33(5): 5-8.]
    [76] Meersmans J, van Wesemael B, De Ridder F, et al. Modelling the three-dimensional spatial distribution of soil organic carbon(SOC) at the regional scale(Flanders, Belgium) [J]. Geoderma, 2009, 152(1/2): 43-52.
    [77] Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh Region, Iran[J]. Geoderma, 2016, 266:98-110.
    [78] Heitkamp F, Ahrends B, Evers J, et al. Spatial 3D mapping of forest soil carbon stocks in Hesse, Germany[J]. Journal of Plant Nutrition and Soil Science, 2021, 184(6): 635-656.
    [79] Xiong Z Q, He H J, Xia Y H. Study on technology of 3D stratum modeling and visualization based on TIN[J]. Rock and Soil Mechanics, 2007, 28(9): 1954-1958.[熊祖强, 贺怀建, 夏艳华. 基于TIN的三维地层建模及可视化技术研究[J]. 岩土力学, 2007, 28(9): 1954-1958.]
    [80] Huang J C. Research on 3D Modeling Method of Soil Genetic Horizons based on soil-landscape relationship[D]. Nanjing:Nanjing Normal University, 2022.[黄键初. 基于土壤-景观关系的土壤发生层三维建模方法研究[D]. 南京:南京师范大学, 2022.]
    [81] Zhu A X, Lü G N, Zhou C H, et al. Geographic Similarity:Third Law of Geography?[J]. Journal of Geo-information Science, 2020, 22(4): 673-679.[朱阿兴, 闾国年, 周成虎, 等. 地理相似性:地理学的第三定律?[J]. 地球信息科学学报, 2020, 22(4): 673-679.]
    [82] Shen Y G, Li A B, Huang J C, et al. Three-dimensional modeling of loose layers based on stratum development law[J]. Open Geosciences, 2022, 14(1): 1480-1500.
    [83] Qu H G, Pan M, Wang Y, et al. Three-dimensional geological modeling from topological cross-sections[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(6): 717-723.[屈红刚, 潘懋, 王勇, 等. 基于含拓扑剖面的三维地质建模[J]. 北京大学学报(自然科学版), 2006, 42(6): 717-723.]
    [84] Wang B, Wu L, Li W J, et al. A semi-automatic approach for generating geological profiles by integrating multi-source data[J]. Ore Geology Reviews, 2021, 134:104190.
    [85] Mallet J L. Geomodeling[M]. New York:Oxford University Press, 2002.
    [86] Guo J T, Wu L X, Zhou W H. Automatic ore body implicit 3D modeling based on radial basis function surface[J]. Journal of China Coal Society, 2016, 41(8): 2130-2135.[郭甲腾, 吴立新, 周文辉. 基于径向基函数曲面的矿体隐式自动三维建模方法[J]. 煤炭学报, 2016, 41(8): 2130-2135.]
    [87] Shi Z, Xu D Y, Teng H F, et al. Soil information acquisition based on remote sensing and proximal soil sensing:Current status and prospect[J]. Progress in Geography, 2018, 37(1): 79-92.[史舟, 徐冬云, 滕洪芬, 等. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展, 2018, 37(1): 79-92.]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIE Xianli, XIA Chengye, YIN Biao, LI Anbo, LI Kaili, PAN Xianzhang. A Review of Soil 3D Prediction and Modelling Techniques[J]. Acta Pedologica Sinica,2025,62(1):14-28.

Copy
Share
Article Metrics
  • Abstract:344
  • PDF: 809
  • HTML: 386
  • Cited by: 0
History
  • Received:November 14,2023
  • Revised:May 20,2024
  • Adopted:June 14,2024
  • Online: June 17,2024
Article QR Code