Methods of Filling in Bulk Density Gaps of Cropland Topsoil in the Sichuan Basin
Author:
Clc Number:

S153.6

Fund Project:

Natural Science Foundation of Sichuan Province, China(No. 2022NSFSC0104)

  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [1]
  • | | |
  • Comments
    Abstract:

    【Objective】 This study aimed to construct a high precision prediction method for soil bulk density to accurately complete the regional soil attribute database.【Method】 Based on the data of 2, 883 typical cropland samples in the Sichuan Basin (including Sichuan Province and Chongqing Municipality) obtained during the second national soil census, this study used correlation analysis, variance analysis, and regression analysis to reveal the statistical characteristics and main controlling factors of the cropland topsoil bulk density in the Sichuan Basin. The traditional pedotransfer functions (PTFs), multiple linear regression (MLR) models, radial basis function neural network (RBFNN) model, and random forest (RF) models were used to establish a soil bulk density prediction model through three modeling methods: whole region, by river basin and by soil type, to fill the missing value of soil bulk density.【Result】 The results show that the cropland topsoil bulk density in the study area ranged from 0.60 to 1.71 g·cm-3, with a mean value of 1.29 g·cm-3. Soil organic matter, soil subgroup, and rainfall in summer were the most important factors influencing bulk density. The RBFNN model constructed by the river basin can better capture the nonlinear relationship between soil bulk density and the influencing factors and the spatial non-stationarity of this relationship. The coefficient of determination (R2) and root mean square error (RMSE) of the 432 independent validation samples were 0.519 and 0.095 g·cm-3, respectively, which were significantly better than those of other methods.【Conclusion】 Therefore, the RBFNN prediction model constructed in sub-basin is helpful to improve the imputation accuracy of the missing values of topsoil bulk density in the Sichuan Basin, and also provides a method reference for the imputation of missing values of soil properties in other regions.

    Reference
    [1] Martín M Á, Reyes M, Taguas F J. Estimating soil bulk density with information metrics of soil texture[J]. Geoderma, 2017, 287:66-70.
    [2] Zhao Y L, Wang Y Q, Zhang X C. Distribution characteristics of bulk density and saturated hydraulic conductivity in intensive land restoration project areas on the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 83-89.[赵亚丽, 王云强, 张兴昌. 黄土高原生态工程区土壤容重及饱和导水率的分布特征[J]. 农业工程学报, 2020, 36(10): 83-89.]
    [3] Benites V M, Machado P L O A, Fidalgo E C C, et al. Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil[J]. Geoderma, 2007, 139(1/2): 90-97.
    [4] Yi X B, Shao M A, Zhao C L, et al. Variation analysis and simulation of soil bulk density within different soil depths along south to north transect of Loess Plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 198-205.[易小波, 邵明安, 赵春雷, 等. 黄土高原南北样带不同土层土壤容重变异分析与模拟[J]. 农业机械学报, 2017, 48(4): 198-205.]
    [5] Han G Z, Zhang G L, Gong Z T, et al. Pedotransfer functions for estimating soil bulk density in China[J]. Soil Science, 2012, 177(3): 158-164.
    [6] Yi X S, Li G S, Yin Y Y. Pedotransfer functions for estimating soil bulk density:A case study in the three-river headwater region of Qinghai Province, China[J]. Pedosphere, 2016, 26(3): 362-373.
    [7] Feng Z J, Nie W B, Yu M, et al. Multiple scale variability of soil infiltration characteristics and establishment of pedo-transfer function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 64-75.[冯正江, 聂卫波, 余淼, 等. 多尺度土壤入渗特性的变异特征和传递函数构建[J]. 农业工程学报, 2022, 38(13): 64-75.]
    [8] Xu L, He N P, Yu G R. Methods of evaluating soil bulk density:Impact on estimating large scale soil organic carbon storage[J]. Catena, 2016, 144:94-101.
    [9] Men M X, Peng Z P, Xu H, et al. Investigation on pedo-transfer function for estimating soil bulk density in Hebei Province[J]. Chinese Journal of Soil Science, 2008, 39(1): 33-37.[门明新, 彭正萍, 许皞, 等. 河北省土壤容重的传递函数研究[J]. 土壤通报, 2008, 39(1): 33-37.]
    [10] Liu J H, Lan C B, Chen J. Fitting and precision evaluation of regional PTFs for soil bulk density-A case study from Fengqiu County, Henan Province[J]. Chinese Journal of Soil Science, 2013, 44(1): 77-82.[刘继红, 兰传宾, 陈杰. 区域土壤容重转换函数构建与预测结果评价——以河南省封丘县为例[J]. 土壤通报, 2013, 44(1): 77-82.]
    [11] Li Y, Liu X M, Wang S J, et al. A study on the pedo-transfer functions and influencing factors for prediction of soil bulk density for limestone soil in Karst area of South China[J]. Journal of Earth Environment, 2018, 9(3): 245-256.[李颖, 刘秀明, 王世杰, 等. 中国南方喀斯特地区石灰土容重传递函数模型及影响因素研究[J]. 地球环境学报, 2018, 9(3): 245-256.]
    [12] Han G Z, Wang D C, Xie X J. Pedotransfer functions for prediction of soil bulk density for major types of soils in China[J]. Acta Pedologica Sinica, 2016, 53(1): 93-102.[韩光中, 王德彩, 谢贤健. 中国主要土壤类型的土壤容重传递函数研究[J]. 土壤学报, 2016, 53(1): 93-102.]
    [13] Yu D X, Jia X X, Huang L M, et al. Spatial variation of soil bulk density in different soil layers in the loess area and simulation[J]. Acta Pedologica Sinica, 2019, 56(1): 55-64.[于冬雪, 贾小旭, 黄来明, 等. 黄土区不同土层土壤容重空间变异与模拟[J]. 土壤学报, 2019, 56(1): 55-64.]
    [14] Zhu L T, Wang X Z, Jiao F. Research of soil bulk density distribution in Loess Hilly Region based on TPS interpolation methods[J]. Chinese Journal of Soil Science, 2012, 43(5): 1043-1048.[朱乐天, 王信增, 焦峰. 基于TPS插值的黄土丘陵区土壤容重空间分布研究[J]. 土壤通报, 2012, 43(5): 1043-1048.]
    [15] Wei J B, Xiao D N, Zhang X Y, et al. Spatial variation of soil bulk density in relation to terrain and land use in eroded of black soil region[J]. Journal of Soil and Water Conservation, 2006, 20(3): 118-122.[魏建兵, 肖笃宁, 张兴义, 等. 侵蚀黑土容重空间分异与地形和土地利用的关系[J]. 水土保持学报, 2006, 20(3): 118-122.]
    [16] Zhang L, Liu Y X, Peng H W, et al. Spatial characteristics of bulk density and related influencing factors of Bijie tobacco-planting soils[J]. Soils, 2022, 54(1): 145-151.[张龙, 刘燕翔, 彭华伟, 等. 毕节市植烟土壤耕层容重的空间特征及影响因素[J]. 土壤, 2022, 54(1): 145-151.]
    [17] Di X S, Wu H Q, Jia H T, et al. Construction of relationship model between soil bulk density and soil organic carbon content of main grasslands in Xinjiang[J]. Chinese Journal of Soil Science, 2021, 52(6): 1323-1329.[狄晓双, 武红旗, 贾宏涛, 等. 新疆主要草地土壤容重与有机碳含量关系模型构建[J]. 土壤通报, 2021, 52(6): 1323-1329.]
    [18] Wang S C, Wang Z Q, Cheng C C, et al. Pedotransfer functions to estimate soil bulk density in Song Nen black soil region of Northeast China[J]. Journal of Beijing Normal University(Natural Science), 2018, 54(3): 381-390.[王思楚, 王志强, 成聪聪, 等. 东北松嫩黑土区土壤密度传递函数及其适用性[J]. 北京师范大学学报(自然科学版), 2018, 54(3): 381-390.]
    [19] Fang B, Wu S C, Chen H Y, et al. Comparison of modeling methods for region soil bulk density in different soil layers[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2258-2268.[方兵, 吴思聪, 陈弘扬, 等. 区域不同土层土壤容重建模方法比较[J]. 西南农业学报, 2021, 34(10): 2258-2268.]
    [20] Nie C Y, Hu K L, Shao Y H, et al. Comparison of predicting results of soil hydraulic parameters by SVR and Rosetta models[J]. Journal of China Agricultural University, 2010, 15(6): 102-107.[聂春燕, 胡克林, 邵元海, 等. 基于支持向量机和神经网络的土壤水力学参数预测效果比较[J]. 中国农业大学学报, 2010, 15(6): 102-107.]
    [21]
    [21] Yang W, Lan H, Li M Z, et al. Prediction of top soil layer bulk density based on image processing and gradient boosting regression tree model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 193-200.[杨玮, 兰红, 李民赞, 等. 基于图像处理和GBRT模型的表土层土壤容重预测[J]. 农业机械学报, 2020, 51(9): 193-200.]
    [22] Guo L N, Fan G S. Prediction of surface soil bulk density based on grey theory and BP Neural Network[J]. Water Saving Irrigation, 2018(2): 93-97.[郭李娜, 樊贵盛. 基于灰色理论-BP神经网络方法的表层土壤容重预测[J]. 节水灌溉, 2018(2): 93-97.]
    [23] Gao R T, Chen H W, Li B G, et al. Prediction of soil hydraulic characteristic parameters based on BP Neural Network[J]. Chinese Journal of Soil Science, 2005, 36(5): 641-646.[高如泰, 陈焕伟, 李保国, 等. 基于BP神经网络的土壤水力学参数预测[J]. 土壤通报, 2005, 36(5): 641-646.]
    [24] Yang W, Lan H, Li M Z, et al. Predicting bulk density and porosity of soil using image processing and support vector regression[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12): 144-151.[杨玮, 兰红, 李民赞, 等. 基于图像处理和SVR的土壤容重与土壤孔隙度预测[J]. 农业工程学报, 2021, 37(12): 144-151.]
    [25] Lu H L, Zhao M S, Liu B Y, et al. Spatial prediction of soil properties based on Random Forest Model in Anhui Province[J]. Soils, 2019, 51(3): 602-608.[卢宏亮, 赵明松, 刘斌寅, 等. 基于随机森林模型的安徽省土壤属性空间分布预测[J]. 土壤, 2019, 51(3): 602-608.]
    [26] Li A W, Ran M, Song L Y, et al. Spatial distribution characteristics and influencing factors of cropland topsoil organic carbon content in the Sichuan Basin[J]. Resources and Environment in the Yangtze Basin, 2023, 32(5): 1102-1112.[李艾雯, 冉敏, 宋靓颖, 等. 四川盆地耕地表层土壤有机碳含量空间分布特征及其影响因素[J]. 长江流域资源与环境, 2023, 32(5): 1102-1112.]
    [27] Hu S J, Deng O P, Zhang S R, et al. Spatial-temporal variability of soil organic carbon and total nitrogen in paddy soils in Sichuan Basin[J]. Soils, 2016, 48(2): 401-408.[胡嗣佳, 邓欧平, 张世熔, 等. 四川盆地水稻土有机碳与全氮的时空变异及影响因素研究[J]. 土壤, 2016, 48(2): 401-408.]
    [28] Li A W, Zhang Y Y, Li C J, et al. Divergent responses of cropland soil organic carbon to warming across the Sichuan Basin of China[J]. Science of the Total Environment, 2022, 851:158323.
    [29] Li A W, Song L Y, Ran M, et al. Impact of climate warming on paddy soil organic carbon change in the Sichuan Basin of China[J]. Environmental Science, 2023, 44(8): 4679-4688.[李艾雯, 宋靓颖, 冉敏, 等. 气候变暖对四川盆地水稻土有机碳含量变化的影响[J]. 环境科学, 2023, 44(8): 4679-4688.]
    [30] Li Q Q, Wang C Q, Yue T X, et al. Method for spatial variety of soil organic matter based on radial basis function neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 87-93, 6.[李启权, 王昌全, 岳天祥, 等. 基于RBF神经网络的土壤有机质空间变异研究方法[J]. 农业工程学报, 2010, 26(1): 87-93, 6.]
    [31] Li Q Q, Yue T X, Wang C Q, et al. Spatially distributed modeling of soil organic matter across China:An application of artificial neural network approach[J]. Catena, 2013, 104:210-218.
    [32] Li Q Q, Zhang H, Jiang X Y, et al. Spatially distributed modeling of soil organic carbon across China with improved accuracy[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(2): 1167-1185.
    [33] Zhang X H, Meng X T, Tang H T, et al. Random forest prediction model for the soil organic matter with optimized spectral inputs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 90-99.[张笑寒, 孟祥添, 唐海涛, 等. 优化光谱输入量的土壤有机质随机森林预测模型[J]. 农业工程学报, 2023, 39(2): 90-99.]
    [34] Li S, Li Q Q, Wang C Q, et al. Spatial variability of soil bulk density and its controlling factors in an agricultural intensive area of Chengdu Plain, Southwest China[J]. Journal of Integrative Agriculture, 2019, 18(2): 290-300.
    [35]
    [35] Sun Y Q, Sun X M, Wu Z F, et al. Impact of sample size and sampling method on accuracy of topsoil pH prediction on a regional scale[J]. Acta Pedologica Sinica, 2023, 60(6): 1595-1609.[孙越琦, 孙笑梅, 巫振富, 等. 样点规模与采样方法对表层土壤pH空间预测精度的影响[J].土壤学报, 2023, 60(6): 1595-1609.]
    [36] Liang Z Z. Research and application of high-resolution digital mapping of key properties of soil at national scale[D].Hangzhou:Zhejiang University, 2019.[梁宗正. 国家尺度土壤关键属性高分辨率数字制图研究及应用[D]. 杭州:浙江大学, 2019.]
    [37] Li Q Q, Yue T X, Fan Z M, et al. Spatial simulation of topsoil TN at the national scale in China[J]. Geographical Research, 2010, 29(11): 1981-1992.[李启权, 岳天祥, 范泽孟, 等. 中国表层土壤全氮的空间模拟分析[J]. 地理研究, 2010, 29(11): 1981-1992.]
    [38]
    [38] Li Q Q, Yue T X, Fan Z M, et al. Study on method for spatial simulation of topsoil SOM at national scale in China[J]. Journal of Natural Resources, 2010, 25(8): 1385-1399.[李启权, 岳天祥, 范泽孟, 等, 中国表层土壤有机质空间分布模拟分析方法研究[J]. 自然资源学报, 2010, 25(8): 1385-1399.]
    [39] Bernoux M, Cerri C, Arrouays D, et al. Bulk densities of Brazilian Amazon soils related to other soil properties[J]. Soil Science Society of America Journal, 1998, 62(3): 743-749.
    [40] Brahim N, Bernoux M, Gallali T. Pedotransfer functions to estimate soil bulk density for Northern Africa:Tunisia case[J]. Journal of Arid Environments, 2012, 81:77-83.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Aiwen, LI Wendan, SONG Liangying, RAN Min, CHEN Dan, CHENG Jinli, QI Haoran, GUO Conghui, LI Qiquan. Methods of Filling in Bulk Density Gaps of Cropland Topsoil in the Sichuan Basin[J]. Acta Pedologica Sinica,2025,62(1):40-53.

Copy
Share
Article Metrics
  • Abstract:223
  • PDF: 720
  • HTML: 318
  • Cited by: 0
History
  • Received:November 27,2023
  • Revised:March 21,2024
  • Adopted:May 13,2024
  • Online: May 17,2024
Article QR Code