Effects of Facility Cultivation Pattern on Soil Bacterial Community in Ningxia Region
Author:
Affiliation:

1.School of Geography, Nanjing Normal University;2.Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Science

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (No. U21A20226)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Soil bacterial community characteristics are important indicators of soil quality, however, little is known about the effects of facility cultivation on soil microbiological properties. Thus, clarifying the responses of soil bacterial community and functions to facility cultivation is of significance for the sustainable utilization of facility soil.【Method】To reveal the change of soil bacterial community under intensive cultivation and its main influencing factors, this study collected and analyzed 67 facility-open field paired soil samples in Ningxia region. Based on amplicon sequencing technology, the effects of facility cultivation on soil bacterial community diversity, composition, interspecific interaction, and assembly process were investigated.【Result】The results showed that compared with the open field soil, the number of bacteria, Shannon, ACE, and Pielou indices of the bacterial community increased by 63.3%, 3.20%, 11.4%, and 1.69%, respectively. The facility cultivation significantly changed the soil bacterial community structure. Redundancy analysis (RDA) showed that the content of available phosphorus, pH, and electrical conductivity were the main environmental factors determining bacterial community structure. Physicochemical parameters such as pH and soil available nutrient contents significantly affected the bacterial community composition of the facility soil, and the climatic factors including annual average precipitation and annual average temperature significantly affected the bacterial community composition of the open field soil. At the phylum level, the relative abundances of Planctomycetes and Firmicutes increased significantly, while the relative abundances of Gemmatimonadetes and Myxobacteria decreased significantly in the facility soil. At the genus level, the dominant genera such as Bacillus and Pseudomonas were enriched in the facility soil. Co-occurrence network analysis showed that the edge, average degree, clustering coefficient, and modularization degree of the bacterial network in the open field soil increased by 10.8 times, 11.0 times, 36.8%, and 1.78 times compared to those in the facility soil, respectively. Also, facility cultivation significantly reduced the complexity and modularization degree of the soil bacterial network. Functional prediction using the Functional Annotation of Prokaryotic Taxa (FAPROTAX) database showed that facility cultivation significantly increased the relative abundance of carbon, nitrogen, and other element cycles and bacterial functional groups related to pathogenic bacteria. The distance decay relationship of the bacterial community in the facility soil was weaker than that in the open field soil. The community assembly was greatly affected by the deterministic process and the diffusion limitation was higher in the facility soil compared to that in the open field soil.【Conclusion】Collectively, facility cultivation in Ningxia region significantly changed multiple properties of the soil bacterial community. These results can provide theoretical guidance for the sustainable utilization of local facility soil.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 07,2023
  • Revised:March 28,2024
  • Adopted:June 25,2024
  • Online: June 26,2024
  • Published: