Effects of Bacterial Residue Organic Fertilizer on Tomato Growth and Soil Antibiotic Resistance Genes Accumulation
Author:
Affiliation:

Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (No. 42090064), and the Key Research and Development Program of Fuyang City, China (No. FYSKJJ202256001)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Bacterial residue is a solid waste produced during the fermentation process of antibiotic synthesis intermediate (6-aminopenicillanic acid). Improper treatment will endanger environmental safety and increase the risk of the spread of antibiotic resistance genes (ARGs). At present, composting is the main method for treating residues due to its harmless and resourceful characteristics. Thus this study was designed to investigate the effects of composted bacterial residue organic fertilizer on tomato growth and soil ARGs accumulation and to assess the ecological risks of residue organic fertilizer. 【Method】In a field experiment, the tomato plant was used as the research object and the effects of organic fertilizer fermented from bacterial residue of penicillin synthesis intermediates on tomato growth, soil physicochemical properties, bacterial community structure, and the diversity and abundance of antibiotic resistance genes were analyzed【Result】The results showed that the application of residue organic fertilizer can increase the aboveground dry biomass of tomatoes in the field, and continuous application for two seasons can increase the vitamin C content of tomato fruits and soil nitrate nitrogen content. After being treated with organic fertilizer, there was no significant change in the diversity of bacterial communities in the rhizosphere soil. However, compared with conventional fertilization, the abundance of Proteobacteria significantly increased, while the abundance of Chloroflexi significantly decreased. There was no significant change in the diversity of ARGs in tomato soil after the application of residue organic fertilizer, but the amino glycoside resistance gene aada1 and sulfonamide resistance gene sul (II) were significantly higher than those in conventional compound fertilizer treatment. Also Luteimonas sp. was positively correlated with tetracycline, aminoglycoside, and sulfonamide resistance genes. 【Conclusion】After applying microbial residue organic fertilizer in tomato rhizosphere soil, there was no enrichment of β-lactam ARGs. However the risk of accumulation of tetracycline, aminoglycoside, and sulfonamide ARGs in rhizosphere microorganisms needs further evaluation.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 18,2024
  • Revised:June 07,2024
  • Adopted:July 19,2024
  • Online: July 22,2024
  • Published: