Effect and Mechanism of Food Waste Compost on the Stability of Paddy Soil Aggregates
Author:
Affiliation:

1.College of Land Science and Technology,China Agricultural University;2.Organic Cycle Research Institute, China Agricultural University (Suzhou);3.China Agricultural University

Clc Number:

Fund Project:

the Special Fund for Basic Scientific Research for Central Universities (No. 2023RC047)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】 Food waste composting is one of the potential directions of food waste resource utilization. Food waste compost is rich in organic matter and salt, and its impact on soil aggregates is still unclear. Exploring the influence of food waste compost application on the stability of paddy soil aggregates and its mechanism can provide references for agricultural utilization of food waste compost. 【Method】 Six treatments were set up in this study: No fertilizer (CK), Chemical fertilizer (F), Food waste fresh compost (FC), Food waste aged compost (AC), Chicken manure organic fertilizer (CM), Pig manure organic fertilizer (PM), The effects of these treatments and the influence of food waste compost on the stability of soil aggregates and soil surface electrochemical parameters were investigated. Correlation analysis and redundancy analysis (RDA) were used to investigate the main factors affecting the stability of aggregates. 【Result】 The results showed that: (1) Food waste compost enhanced the water stability of paddy soil aggregates, and reduced the slaking and differential swelling effects. Also, the MWDYoder, MWDLB-fast, and MWDLB-slow of AC were 21.4%, 107.8%, and 49.3% higher than CK, respectively. (2) The electrochemical properties of the soil surface were the main factors affecting the stability of aggregates and the surface charge density of the four organic fertilizers increased by 29.0%-45.2%. (3) Organic matter has a significant correlation with surface charge density, specific surface area, and surface charge number, and the correlation coefficients are 0.67, 0.53, and -0.63, respectively. Furthermore, exchangeable calcium showed a significant positive correlation with organic matter and the correlation coefficient was 0.90. 【Conclusion】 Food waste compost can enhance the surface charge density of soil by increasing soil organic matter, thus increasing the cementation between exchangeable calcium and soil particles and enhancing the stability of soil aggregates.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 24,2024
  • Revised:June 04,2024
  • Adopted:July 17,2024
  • Online: July 18,2024
  • Published: