Abstract:【Objective】Soil aggregate is the basic unit of soil structure, and its stability is an important index to evaluate soil erosion. This study aimed to evaluate the stability and influencing factors of soil aggregates in the granite Benggang area, explore the relationship between aggregate stability and Benggang erosion, and provide a scientific basis for the prevention and control of Benggang erosion. 【Method】In this study, the typical Benggang in the granite area of southeastern Guangxi was taken as the research object. The dry sieving method and Elliott wet sieving method were used to determine the particle size distribution of soil aggregates in the Benggang erosion area, and the soil samples containing coarse particles were desanded to further analyze the effect of aggregate stability on Benggang erosion. 【Result】The results showed that: (1) The soil mechanically stable aggregates in the granite Benggang area were mainly >2 mm, and the water-stable aggregates were mainly <0.25 mm. The wet sieve average mass diameter of soil aggregates decreased first, then increased and then decreased with the deepening of soil layer. The sanding correction of granite soil reduced the wet sieve error, and the disaggregate reduction decreased with the increase of soil depth, indicating that the stability of deep soil aggregates was poor. (2) The results of correlation analysis showed that the average mass diameter, macro-aggregate content, and disaggregate reduction were significantly positively correlated with soil organic matter, free iron oxide content, silt and clay content, and significantly negatively correlated with pH and sand content. (3) Utilizing redundancy analysis, the study identified that organic matter content and clay content accounted for 89.82% and 7.64% of the variation in soil aggregate indicators, respectively, and explained 97.46% of the total variance. Increasing the levels of soil organic matter and clay content can significantly enhance the stability of soil aggregates, thus mitigating the risk of Benggang erosion. 【Conclusion】This study clarified the stabilization mechanisms of aggregates in the granite red soil region and their influence on Benggang erosion and provides a scientific basis for regional ecological security and sustainable agricultural development.