The Synergistic Effect of a Phage-Probiotic Combination on Suppressing Bacterial Wilt Disease
CSTR:
Author:
Affiliation:

Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University

Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 42325704 and 42377118), the Natural Science Foundation of Jiangsu Province, China (BK20240194)

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    【Objective】Bacterial wilt disease, caused by soil-borne Ralstonia solanacearum, has led to significant yield reductions or even crop failures in tomatoes, potatoes, and tobacco, severely limiting the safe supply of agricultural products. Rhizosphere microorganisms play a crucial role in mitigating soil biotic impediments. Probiotics can inhibit pathogens through antagonism or nutrient competition, while phages can target pathogens through specific infections. However, the single use of either probiotics or phages often results in unstable effects, and the high-density fermentation cost of these strains is considerable. 【Method】To establish an efficient and stable technology for reducing soil biotic impediments, this study constructed combinations of antagonistic-competitive and nutrient-competitive beneficial bacteria with phages. It explored their synergistic effects in reducing soil wilt disease through in vitro microplate and greenhouse pot experiments. The potential mechanisms of synergy between probiotics and phages were also investigated. 【Result】 The results showed that most combinations of phages and probiotics exhibited synergistic effects, significantly enhancing the inhibition of pathogenic R. solanacearum growth and the reduction of bacterial wilt disease. Notably, the combination of the antagonistic-competitive beneficial bacterium T-5 with phages resulted in an 89.19% reduction in pathogenic bacterial growth compared to the control. Greenhouse experiments indicated that the synergistic effect reduced the disease index by an average of 58.18%, with the combination of the nutrient-competitive beneficial bacterium WR21 and phages significantly reducing the disease index by 67.28%. Further studies revealed that even at lower concentrations of beneficial bacteria, the phage-bacteria synergy remained effective. At a concentration of 104 CFU?g-1 substrate, the combination of T-5 with phages reduced the disease index by 21.56% and the number of rhizosphere pathogenic bacteria by 19.21% compared to the application of beneficial bacteria alone, demonstrating a strong synergistic effect. Additionally, the study explored the impact of phage-beneficial bacteria combinations on the characteristics of pathogenic R. solanacearum. The results showed that the phage-nutrient-competitive beneficial bacteria combination significantly reduced the pathogen""s carbon source utilization ability, with the WR21 and phage combination reducing the number of carbon sources utilized by the pathogen by 87.9%. Furthermore, under the dual stress of phages and antagonistic-competitive beneficial bacteria, the sensitivity of the pathogen to the antagonistic substances produced by T-5 increased by 64.10%. 【Conclusion】This study highlights the potential of phage-beneficial bacteria combinations in mitigating bacterial wilt disease and preliminarily elucidates the potential mechanisms behind their synergistic effects. These findings provide theoretical and technical support for the development of efficient soil biological obstacle reduction techniques.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 16,2024
  • Revised:August 15,2024
  • Adopted:September 06,2024
  • Online: September 09,2024
Article QR Code