Changes in plant- and microbial-derived soil organic carbon in three temperate mature forests
Author:
Affiliation:

1.School of Forestry and Landscape Architecture Anhui Agricultural University;2.Shandong Agricultural University;3.College of Forestry and Landscape Architecture, Anhui Agricultural University

Fund Project:

National Natural Science Foundation of China (No. 32371847)

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    【Objective】Forest ecosystems are the largest carbon pool in terrestrial ecosystems, and forest soils are the largest organic carbon pool in terrestrial ecosystems. Soil organic carbon (SOC) is an important component of the carbon pool in terrestrial ecosystems, and plant- and microbial-derived organic carbon are the key components of SOC. So, an advanced understanding of the effects of forest types on plant- and microbial-derived organic carbon is important. 【Methods】From three types of temperate forests: Pinus densiflora, Robinia pseudoacacia and Quercus acutissima, 0-10 cm mineral soil was collected to analyze the contents of lignin phenols and amino sugars, which are biomarkers of soil organic carbon of plant- and microbial-derived organic carbon. Also, the basic physical and chemical properties of soil, and the community structure and activity of microorganisms were investigated. 【Result】The soil total amino sugars, amino glucans, amino galactose, and cytosolic acids were significantly lower in P. densiflora than in R. pseudoacacia and Q. acutissima, Also, the bacterial, fungal, and microbial residue carbon was significantly lower in P. densiflora than in Q. acutissima and R. pseudoacacia, and the content of microbial residue carbon in R. pseudoacacia and Q. acutissima was 1.9 and 2.3 times higher than that in P. densiflora. The contribution of microbial residue carbon to SOC in R. pseudoacacia, Q. acutissima, and P. densiflora was 56.79%, 57.41%, and 52.55%, respectively. In addition, the content of fungal residue carbon was 12.76-16.56 times higher than that of bacterial residue carbon, and its contribution to organic carbon was much larger than that of bacterial residue carbon. Furthermore, it was observed that the content of total lignin phenol and its three types of monomers (V, S and C) followed R. pseudoacacia>Q. acutissima>P. densiflora with, the content of total lignin phenol in R. pseudoacacia and Q. acutissima being 3 and 2.8 times higher than that in P. densiflora. Also, the acid-aldehyde ratios of Vanillyl-based ((Ad/Al)v) and Syringyl-based ((Ad/Al)s) in the soil of R. pseudoacacia were significantly higher than those in Q. acutissima and P. densiflora, suggesting that the decomposition of soil lignin was higher in the R. pseudoacacia.Random forest model predictions showed that total nitrogen, organic carbon, total phosphorus, pH, and xylanase were the main factors affecting soil microbial, bacterial, fungal residue carbon and lignin phenols. Following the structural equation modeling, it was recorded that soil physicochemical and microbial properties are latent variables that have a strong influence on soil microbial residual carbon and lignin content,【Conclusion】Our results indicate that microbial growth can be promoted by improving soil nutrients and microbial properties. Eventually, increasing microbial and plant-derived organic carbon content and contribution to the SOC pool in temperate forest management can, maximize its carbon sequestration potential.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 13,2024
  • Revised:September 28,2024
  • Adopted:December 05,2024
  • Online: January 13,2025
Article QR Code