Response of Dissolved Organic Matter Content and Quality in Greenhouse Soils to the Application of Organic Fertilizers with Various Carbon Components
CSTR:
Author:
Affiliation:

1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences;2.National Agricultural Experimental Station for Agricultural Environment, Luhe;3.School of the Environment and Safety Engineering, Jiangsu University

Clc Number:

Fund Project:

National Key Research and Development Program of China (No. 2023YFD1702200), and the National Natural Science Foundation of China (41807047)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Dissolved organic matter (DOM) is the most active functional component in the soil carbon pool, and the application of organic fertilizer is an effective measure for carbon sequestration and soil fertility improvement in greenhouse soils. However, the response of DOM content and quality in greenhouse soils to organic fertilizer is still unclear, which hinders the elucidation of the regulation mechanisms of the active carbon pool in greenhouse soils and the development of precise application technologies for organic fertilizers.【Method】This study was conducted in situ and five treatments were included: no fertilization as control (CK), chemical fertilizer only (F), and three organic fertilizers with different carbon components replacing 30% of chemical N fertilizer (composted straw replacing 30% of chemical N, FMs; chicken manure replacing 30% of chemical N fertilizer, FMc; and spent mushroom replacing 30% of chemical N fertilizer, FMm). The content of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were studied in the surface and subsurface layers of greenhouse soils under vegetable cultivation. Combined with three-dimensional fluorescence spectroscopy technology and parallel factor analysis method, the fluorescence spectral characteristic parameters and chemical composition of DOM in soil were analyzed.【Result】Compared with CK, the F treatment had no significant effect on the DOC content in both the surface and subsurface soil; it only significantly increased the DON content in the subsurface soil, with an increase of 1.22-folds. The results showed that compared with F, the FMc organic fertilizer with the highest content of labile carbon components significantly increased the DOC and DON content by 44.2% and 78.1%, respectively, in the surface soil. However, only the DON content in the surface soil significantly increased under the FMs and FMm treatments. Compared with CK, the application of chemical and organic fertilizers significantly reduced the DOC/DON ratio in the surface and subsurface soils, and the humification index (HIX) of DOM in the surface soil significantly increased by 1.06 to 2.07-folds, reaching the highest in the FMc treatment. Also, the fluorescence spectral characteristics of DOM in the subsurface soil did not significantly respond to fertilization. In addition, the content of DOC and DON were significantly negatively correlated with fulvic acid-like components with low molecular weight, while significantly positively correlated with humic acid and aromatic components with high molecular weight.【Conclusion】In summary, the application of chicken manure rich in labile carbon components can more effectively increase the content of DOC and DON and the humification degree of DOM in the surface soil, and increase the proportion of refractory components of DOM in the subsurface soil. Thus, it is more beneficial to apply chicken manure to achieve the "double improvement" of the content and quality of labile carbon pools in the entire tillage layer of greenhouse soils under vegetable cultivation.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 19,2024
  • Revised:February 19,2025
  • Adopted:March 31,2025
  • Online: May 20,2025
  • Published:
Article QR Code