Responses of Soil Bacterial and Fungal Community Characteristics to Organic Materials Application in Urban Green Soils
CSTR:
Author:
Affiliation:

1.Shanghai Academy of Landscape Architecture Science and Planning;2.Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences

Clc Number:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Adding organic waste materials into soils significantly affects microbial characteristics, however, the responses of bacterial and fungal diversity, community compositions and their interactions to the addition of different types of organic materials in urban green soils remain poorly understood.【Method】Using mesh bag method, six types of organic materials including green waste (GW), green waste compost (GWC), biogas residue (BR), biogas residue compost (BRC), peat (PT) and biochar (BC) were selected to investigate the effects of organic materials addition on soil properties, microbial communities and co-occurrence network in urban green soils through a 16-month in situ experiment.【Result】The addition of organic materials greatly increased soil electrical conductivity, soil organic carbon, and soil total nitrogen content by 12.7%-49.0%, 34.1%-87.0%, and 4.2%-14.7%, respectively. Soil bacterial alpha (?) diversity did not change among all the treatments, while soil fungal ? diversity was obviously increased after organic materials addition, which was mainly regulated by soil electrical conductivity. The dominant fungi were Ascomycota in urban green soils. Fungal communities in GW and GWC treatments obviously differed from other treatments, which was significantly influenced by soil pH and microbial biomass carbon. In contrast, Proteobacteria, Acidobacteria, Chloroflexi and Fimicutes were abundant in urban green soils. Bacterial communities in BR and BRC treatments were distinctly separated from other treatments, which was primarily driven by the aromaticity index of organic materials. Further analysis of occurrence-network revealed six main ecological clusters. The relative abundances of microbe in each module were different among all the treatments and were significantly correlated with soil nutrients and aromaticity index of organic material. Specifically, the highest relative abundance of bacteria community in module 2, 3 and 4 was observed in BR and BRC treatments, which was positively correlated with dissolved organic carbon, microbial biomass carbon, and soil total nitrogen, indicating that addition of biogas residue and biogas residue compost might enhance soil nutrient availability and subsequently facilitate microbial activity.【Conclusion】This study concludes that adding different types of organic materials can regulate urban green soil microbial community composition and interaction patterns by influencing soil physicochemical properties, thereby altering soil carbon cycling. Organic materials with low aromaticity index, which are more easily decomposed by microorganisms, may accelerate soil carbon cycling, whereas organic materials with high aromaticity index may favor carbon retention in soils. These findings hold significant implications for accurately assessing the resource utilization of urban organic wastes and the improvement of microbial diversity and ecological function in green space soils.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 23,2024
  • Revised:July 15,2025
  • Adopted:September 04,2025
  • Online: September 05,2025
  • Published:
Article QR Code