Microbial Mechanisms Underlying the Effects of Elevated Atmospheric CO2 Concentrations on Nitrogen Fixation Potential in Paddy Soils
CSTR:
Author:
Affiliation:

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,School of Ecology Applied Meteorology,Nanjing University of Information Science Technology

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】?Biological nitrogen fixation?, which converts inert nitrogen into plant-available nitrogen, is a critical process for maintaining the soil nitrogen cycle and supporting the productivity of agroecosystems. However, the effect of atmospheric CO2 on biological nitrogen fixation in paddy fields remains poorly understood. Thus, this study aims to elucidate the microbial-driven mechanism of biological nitrogen fixation in paddy soils affected by elevated atmospheric CO2. The findings of this study will provide a scientific basis for the optimization of nitrogen cycling in paddy fields and sustainable nitrogen management in agriculture under climate change scenarios.【Method】In this study, we investigated the microbial-driven mechanism of biological nitrogen fixation in paddy fields by elevated atmospheric CO2 concentration. Two treatments, CK (ambient CO2 concentration) and EC (elevated ambient CO2 concentration by 200 μmol·mol?1) were set up by using an open-top chamber (OTC)-based platform for the automated control of CO2 concentration. Soil physicochemical properties, nitrogen fixation potential (NFP), and the abundance and community composition of nitrogen-fixing bacteria (nifH gene) of paddy soils were analyzed by microcosmic cultivation, real-time quantitative PCR, and high-throughput sequencing.【Result】The results showed that across the whole rice plant growth period and compared with CK, EC treatment significantly increased the microbial biomass nitrogen (MBN) content by 3.3% and significantly decreased the NH4+?N content by 11.6%. Also, the NFP and nifH gene abundance were significantly increased by EC treatment. At the maturity stage, the community structure of the nifH gene in the EC treatment changed significantly compared with CK. In addition, the TN content was positively correlated with NFP, which was regulated by soil MBN content, SOC content, and nifH gene abundance.【Conclusion】This study reveals that elevated atmospheric CO2 concentration increased soil MBN content and nifH gene abundance, enhanced NFP, and increased the nitrogen content of paddy soils.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 25,2024
  • Revised:June 12,2025
  • Adopted:July 08,2025
  • Online: July 18,2025
  • Published:
Article QR Code