Abstract:Wheat, serving as a staple food for one-third of the global population, has long been overlooked in terms of its grain cadmium (Cd) accumulation capacity and the resulting dietary exposure risks. By integrating analyses of global literature and our recent research findings, this study preliminarily clarified that wheat grown in contaminated alkaline soils exhibited high Cd accumulation capacity with elevated risks of exceeding food safety thresholds. In rice-wheat rotation farmland systems, the Cd enrichment factor of wheat grains at the same sampling points was significantly higher than that of rice. Remarkably, wheat grains exceeded China"s food safety standard in alkaline soils even when the Cd concentrations remained below the national risk screening threshold. Elevated soil pH levels induced a pronounced increase in wheat"s contribution to adult daily dietary cadmium intake, while concurrently reducing rice"s contribution, demonstrating that alkaline soil conditions amplify Cd exposure risks specifically through wheat-derived dietary pathways. The article further discussed the Cd speciation in alkaline soils and their influencing factors, analyzed the mechanisms related to Cd migration and its chemical binding forms at the root-soil interface, and explored the interaction effects between Cd and trace elements during uptake and translocation by wheat. In order to develop wheat-safe production technologies adapted to the characteristics of alkaline Cd-contaminated soils, future research should strengthen investigations into the molecular mechanisms of Cd interface processes in the wheat rhizosphere and Cd-trace elements interactions on uptake and translocation by roots.