Abstract:Objectives: Cadmium contamination poses a significant threat to agricultural production and human health due to its persistence, toxicity, and potential to accumulate in crops and the food chain. However, there is a need for a comprehensive review that provides scientific guidelines for understanding Cd soil-solution chemistry, decreasing Cd levels in the food chain, and bridging the gap between laboratory research and field applications. Methodology: This study conducted an in-depth literature analysis of both laboratory and field research to provide a comprehensive analysis of the soil chemistry of cadmium, which is crucial for understanding its bioavailability and mobility. Results: The chemical behavior of Cd in soil is influenced by various factors, such as soil pH, organic matter content, and redox conditions. These factors determine the speciation of Cd, which in turn affects its uptake by plants and its potential to enter the food chain. The phytotoxic effects of Cd are manifold, impacting plant growth, physiological functions, and metabolic processes. Cd can suppress plant growth by inhibiting root and shoot development, reducing chlorophyll content, and disrupting photosynthesis. It also induces oxidative stress by increasing the production of reactive oxygen species (ROS), which can damage cellular components such as lipids, proteins, and DNA. The review also sheds light on the molecular mechanisms underlying plant responses to Cd stress. Two major molecular systems are highlighted: metal transporter families and regulatory transcription factor families. Metal transporters, including Nramp, HMA, ZIP, ABC, and YSL, play essential roles in Cd uptake from the soil, translocation from roots to shoots, and detoxification within plant cells. These transporters facilitate the movement of Cd through cellular membranes and into subcellular compartments, such as vacuoles, where it can be sequestered to reduce its toxicity. On the other hand, transcription factors like WRKY, MYB, bHLH, and NAC regulate the expression of genes involved in Cd tolerance and detoxification. They activate defense mechanisms that help plants mitigate Cd-induced oxidative damage and maintain cellular homeostasis. Based on the understanding of these molecular mechanisms, the review proposes innovative strategies for the sustainable utilization of Cd-contaminated soils. These strategies integrate molecular design approaches, such as engineering transporters to limit Cd uptake and enhance its sequestration, with phytoremediation techniques that utilize metal-tolerant plant species. By providing scientific guidelines for reducing Cd levels in agricultural products and enhancing food safety protocols, this study bridges the gap between laboratory research and field applications. It offers valuable insights for developing environmentally sustainable agricultural practices in regions affected by Cd pollution, thereby contributing to global food security and environmental protection. The proposed approaches not only aim to decrease Cd accumulation in crops but also seek to improve the overall health and productivity of plants grown in contaminated soils, ensuring safer food supplies for the growing global population. Furthermore, the review emphasizes the importance of these strategies in mitigating the adverse effects of Cd contamination on soil fertility and ecosystem health. By reducing Cd levels in soil and crops, these strategies can help maintain soil fertility, protect biodiversity, and promote the overall health of ecosystems. Conclusion: The integration of different approaches can lead to the development of more resilient agricultural systems that can withstand the challenges posed by Cd contamination and other environmental stresses. This comprehensive review thus provides a foundation for future research and practical applications aimed at addressing the complex issue of Cd pollution in agricultural environments.