The Theoretical Framework and Technical Pathway of
CSTR:
Author:
Affiliation:

1.State Key Laboratory of Nutrient Use and Management,Institute of Agricultural Resources and Environment,Shandong Academy of Agricultural Sciences,Jinan;2.College of Resources and Environmental Sciences / National Institute for Green Development / State Key Laboratory of Nutrient Use and Management,China Agricultural University;3.State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing

Clc Number:

Fund Project:

Supported by the National Key R&D Program of China (No. 2021YFD19001900), and the Taishan Scholars Program of Shandong Province, China (No. tsqn202312287)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Saline-alkali land is an important agricultural land resource, and in recent years, China has adopted various improvement measures for the management of saline-alkali soil. However, the improvement and utilization of saline-alkali land still face challenges, including high costs, severe water resource constraints, poor stability of improved saline-alkali land with a tendency to revert, and the need for enhanced low-water-consumption and high-efficiency technical support. To address these significant issues, this study proposes the concept of "rhizosphere suitable microzones" (RSM) for crops in saline-alkali soils. Focusing on the problems of "difficult emergence and establishment" of crops in saline-alkali land, as opposed to the overall soil improvement strategy, it expounds the theoretical framework of RSM. RSM refers to creating a specific local environment with unique physical, chemical, and biological characteristics within the small space of plant root systems, which differs from the surrounding environment and can support specific biological communities or life activities. This study proposes the technical path construction concept centered around "activating soil to promote root growth, using ions to nourish roots, acidification to regulate roots, and biological agents to protect roots". This will be achieved through cross-innovation of multiple theories, including soil fertility enhancement with carbon addition and salt reduction, balanced nutrient supply for salt inhibition, physical structure optimization to eliminate compaction, and enhancement of rhizosphere biological functions. Thus, it depicts the exploration of the construction principles and technical paths of RSM from a systematic perspective. This study outlines the key directions and contents of research on RSM and saline-alkali land improvement, aiming to break through the technical bottlenecks of saline-alkali soil improvement and promote the development of related disciplines. Specifically, the study considers salt-tolerant high-value crop varieties as pioneers, promotes the migration of sodium ions in the rhizosphere through water regulation, and considers the research and development of the technical path of RSM for crops in saline-alkali soils. This is centered on new slow and controlled-release fertilizers supplemented by anti-salt, growth-promoting, and biological strengthening factors.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 05,2025
  • Revised:July 03,2025
  • Adopted:July 29,2025
  • Online: July 30,2025
  • Published:
Article QR Code