Distribution of Photosynthetic Carbon in Corn-soil System and Its Effect on Maize Biomass under Biological Fertilization
CSTR:
Author:
Affiliation:

1.School of land resoures and environment,Jiangxi Agricultural University;2.Institute of soil science,Chinese Academy of Sciences

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】To investigate the effects of different biological fertilization practices on photosynthetic carbon (C) allocation and maize biomass, a field experiment was conducted at the Red Soil Ecological Experimental Station of the Chinese Academy of Sciences. 【Method】Four treatments were selected from a long-term biological fertilization trial: ① Chemical fertilizer + Organic manure (FO), ② Chemical fertilizer + Organic manure + Microbial inoculant (FOP), ③ Chemical fertilizer + Organic manure + Nematode inoculation (FON), and ④ Chemical fertilizer + Organic manure + Microbial inoculant + Nematode inoculation (FOPN). After soil samples were collected from the four treatments, a pot experiment using 13CO? pulse labeling was performed to study the allocation of photosynthetically fixed carbon within the maize-soil system. 【Result】The 13C pulse labeling results showed that, compared with the FO treatment, the FOPN treatment significantly increased the total amount of photosynthetic carbon in both aboveground and belowground parts, with a more pronounced increase in the aboveground portion. This led to a reduced belowground-to-aboveground allocation ratio of photosynthetic carbon. Moreover, the trends of maize biomass in aboveground and belowground parts under different treatments were consistent with the trends in carbon allocation. All biofertilization treatments significantly increased total and available soil nutrients, the total abundance of nematodes, and altered nematode community composition, with the most pronounced effects observed under the FOPN treatment. Random forest analysis and structural equation modeling jointly revealed that biofertilization enhances nutrient availability and increases aboveground photosynthetic carbon allocation by elevating nematode abundance and shifting community composition, ultimately promoting maize aboveground biomass.【Conclusion】 This study clarifies the mechanism by which nematode predation influences maize productivity and provides important theoretical guidance for biological fertilization technologies in red soil ecosystems.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 06,2025
  • Revised:September 13,2025
  • Adopted:November 12,2025
  • Online: November 19,2025
  • Published:
Article QR Code