Community Structure of Aerobic Methanotrophs and Environmental Drivers in Coastal Wetlands
CSTR:
Author:
Affiliation:

1.School of environment science and engineering, Xiamen University of technology;2.College of environment and ecology, Xiamen University

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】 This study investigated the community structure of aerobic methanotrophs in coastal wetlands of southeastern China and the key environmental factors shaping their distribution. 【Method】Sediment samples were collected from four coastal wetlands (Shanghai, Fuzhou, Xiamen, and Dongguan). Methane oxidation rates were determined, physicochemical properties were analyzed, and 16S rRNA amplicon sequencing was performed to resolve community composition. Redundancy analysis (RDA) was applied to assess the influence of environmental factors such as temperature, precipitation, and salinity on community distribution. 【Result】The results showed significant differences in methane oxidation rates among wetlands, with the highest rate observed in Fuzhou (0.11 mmol·L-1·d-1) and the lowest in Dongguan (0.058 mmol·L-1·d-1). Community composition also varied substantially: Methylomicrobium dominated in Shanghai and Xiamen, while Methylobacter and Methylocystis were more abundant in Fuzhou and Dongguan. RDA indicated that temperature, water content, and salinity were the major drivers of community structure, with Methylobacter abundance positively correlated with temperature, and Methylocystis abundance negatively correlated with salinity. These findings demonstrate that the community structure and metabolic activity of aerobic methanotrophs in coastal wetlands are regulated by multiple environmental factors, and regional differences are primarily shaped by the adaptive responses of functional taxa to local conditions. 【Conclusion】This study highlights the spatial heterogeneity and environmental drivers of methanotroph communities in coastal wetlands and provides theoretical insights into wetland carbon cycling processes.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 28,2025
  • Revised:October 10,2025
  • Adopted:December 01,2025
  • Online: December 12,2025
  • Published:
Article QR Code