Effects of Soil Microbial Diversity on Soil Multifunctionality Under Sustained Intensive Forest Management
CSTR:
Author:
Affiliation:

1.Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi;2.Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences;3.School of Forestry and Landscape Architecture, Anhui Agricultural University

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (No. 32260303), the Key Laboratory of Forest Resources and Silviculture of Anhui Province, China (No. LMZYPY-04), and the Scientific Research Startup Fund for Doctors of Hubei Minzu University (No. BS25087)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Soil microorganisms serve as crucial mediators, bridging organic and inorganic environmental factors. They play a significant role in regulating multiple soil functions. Forest management represents the primary anthropogenic disturbance to forest soils, yet the mechanisms through which soil microorganisms influence soil multifunctionality (SMF) under continuous intensive management remain unclear. 【Method】This study investigated Carya cathayensis var. dabeishansis secondary forests in the Dabie Mountains to explore the mechanisms by which soil microbial diversity affects SMF under sustained intensive forest management. The authors analyzed 45 plots under varying management durations (0, 3, 8, 15, 20 years) and management metods (CK: no management; EM: extensive management; IM: intensive management) in Jinzhai County, Anhui Province. The soil microbial diversity (amplicon sequence variant, ASV) number, Simpson index, Shannon-Wiener index, and Chao1 richness index for bacterial and fungal communities) and 15 indicators related to four soil functions: nutrient supply (alkali-hydrolyzable nitrogen (AN), available phosphorus (AP), available potassium (AK), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP)); nutrient storage (total nitrogen (TN), total phosphorus (TP), total potassium (TK)); nutrient cycling (acid phosphatase (ACP), urease (UE), sucrase (SC), β-1,4-glucosidase (BG), protease (Pro)); and carbon storage (soil organic carbon, SOC), microbial biomass carbon (MBC)) were measured. SMF was calculated using both the single-function approach and the averaging method. Two-way ANOVA was employed to compare management effects, while Pearson correlation, Mantel tests, and random forest models identified key functional indicators. Structural equation modeling (SEM) was constructed to analyze regulatory pathways. 【Result】The results indicated that short-term management (3 years) significantly enhanced soil microbial diversity and SMF (bacterial Shannon index peaked under IM at year 3; SMF increased by 0.94 compared to CK). However, both declined significantly with prolonged management, with bacterial ASV number and Shannon index decreasing by 19.63% and 3.46% after 20 years of intensive management, respectively. Management duration exerted a significantly greater impact on microbial diversity and SMF than management regime (P < 0.001), and IM amplified this temporal effect (e.g., carbon storage, nutrient cycling, and supply functions under IM-15 were significantly lower than CK). Random forest analysis identified SOC, TP, MBC, AN, TK, MBN, SC, and BG as key indicators of SMF (P < 0.05). SEM revealed that microbial diversity influenced SMF by indirectly regulating soil nutrients and enzyme activities (explaining 57.4% of the variation): bacterial diversity positively drives nutrient and carbon storage. In contrast, fungal diversity governed nutrient cycling and carbon storage. Nutrient supply and storage functions were the core contributors to SMF, where TP and TK indirectly affected SMF by regulating AN, MBN content, and SC/BG enzyme activities. Moreover, long-term management induced soil acidification, SOC loss, and phosphorus limitation (TP significantly decreased after 15 years), impairing microbial community function. This subsequently reduced enzyme activities (e.g., SC, BG) and nutrient turnover efficiency, ultimately leading to SMF degradation.【Conclusion】 This study revealed that the loss of soil microbial diversity is a key factor in SMF degradation under long-term intensive forest management. Thus, optimizing management strategies (supplementing carbon/phosphorus fertilizers, reducing nitrogen fertilizer application, decreasing understory vegetation clearance frequency) to maintain soil ecological functions is highly recommended. These findings provide a theoretical basis for the sustainable management of economic forests in mountainous regions.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 24,2025
  • Revised:August 12,2025
  • Adopted:September 24,2025
  • Online: September 28,2025
  • Published:
Article QR Code