Phytic Acid-modified Biochar Reduces Soil Cd Release by Regulating pH and Aggregates Structure
CSTR:
Author:
Affiliation:

Research Institute of Subtropical Forestry, Chinese Academy of Forestry

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 32071736 and 32101370)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Phytic acid-modified biochar exhibits excellent adsorption capacity for cadmium (Cd) in aqueous solution; However, its effectiveness and mechanisms in remediating Cd-contaminated soils remain unclear. This study systematically analyzes the dynamic impact of phytic acid-modified biochar on soil properties, investigates its effect on Cd release in soil, and reveals the key mechanisms underlying biochar regulation of Cd movement in soil. 【Method】 Soil incubation experiments were conducted to systematically evaluate the remediation and amelioration effects of bamboo biochar (BBC), phytic acid-modified bamboo biochar (PABC), and sodium phytate-modified bamboo biochar (SPBC) on Cd-contaminated soils over various incubation periods (0, 10, 20, 60, 120, and 180 days). 【Result】The addition of biochar significantly altered the pH of both soil and soil solution and increased the electrical conductivity (EC). SPBC exhibited the highest EC and total carbon concentration in the soil solution, while PABC showed a distinct advantage in supplying total phosphorus, particularly in the short term. During the early and mid-phases (0-120 days), biochar treatment significantly reduced the Cd concentration in soil solution (24.60%-99.35%), with a significant dose-response effect, and SPBC exhibited the most effective remediation. In addition to their inherent adsorption mechanisms, biochar also inhibited Cd release indirectly by affecting the chemical (pH, total phosphorus, and total carbon), physical (aggregate structure), and biological properties (urease and acid phosphatase) of the soil and soil solution, with soil pH and micro-aggregate content identified as key factors influencing Cd release. In the later phase (120-180 days), enhanced soil aggregate stability further facilitated the remediation process, as biochar increased the activity of urease and acid phosphatase. 【Conclusion】 Phytic acid-modified biochar demonstrates strong potential for both Cd remediation and soil improvement in heavily contaminated soils, offering significant application value.

    Reference
    Related
    Cited by
Get Citation
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 01,2025
  • Revised:October 14,2025
  • Adopted:October 27,2025
  • Online: November 03,2025
  • Published:
Article QR Code