Potassium supply capacity of and potassium dynamics in different types of soils under paddy rice - ryegrass rotation
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A pot experiment was carried out using different types of soils to study their potassium (K) supply capacities and K dynamics under a ryegrass-rice rotation system, with a view to providing scientific basis for the research on mechanism of soil supplying K and reasonable K control. Results show that both aboveground biomass and K uptake of the crops in the group without K treatment (NP) were the highest in fluvo-aquic soil (FS), which was followed by yellow cinnamon soil (YCS), then red soil (RS), while in the group with K, fertilization, no significant difference (p>0.05) between the soils was observed in aboveground biomass and a decreasing order of YCS > FS > RS was in terms of K uptake. Treatment NPK was 55.6%, 45.2% and 23.2% higher than treatment NP for red soil, yellow cinnamon soil and fluvo-aquic soil, respectively, in biomass and 368.8%, 166.8% and 74.5%, higher, respectively in K uptake. In the ryegrass growth season, the concentrations of water soluble K and exchangeable K in treatment NP decreased in all the soils. The concentration of non-exchangeable K decreased significantly in fluvo-aquic, but remained almost unchanged in the early season, rose in the middle season and dropped in the late season in yellow cinnamon soil and red soil. Soil K was much higher in treatment NPK than in treatment NP, but varied in a similar pattern in all the three soils, regardless of treatments and K forms. During the rice growing period, in treatment NP, water soluble K in all the soils did not change much soil exchangeable K declined first and then rose, but non-exchangeable K showed a reverse trend, while in treatment NPK, soil exchangeable K rose significantly in the early, and declined in the middle and then turned slightly back again in the late period, whereas soil water soluble K and non-exchangeable K showed a rising and then falling trend. To sum up, In treatment NP, K consumption was higher in all the soils and in all the periods of the rotation, thus decreasing both soil water soluble K and exchangeable K and in turn triggering release of non-exchangeable K. Application of K fertilizer increases the concentrations of water soluble K and exchangeable K and the ratio of K transformed into non-exchangeable K, thus effectively improving K supply capacity of the soil, and eventually increasing the yield of ryegrass and rice significantly.

    Reference
    Related
    Cited by
Get Citation

Zhan Liping, Li Xiaokun, Lu Jianwei, Cong Rihuan, Wang Zheng, Wang Jin, Liao Zhiwen. Potassium supply capacity of and potassium dynamics in different types of soils under paddy rice - ryegrass rotation[J]. Acta Pedologica Sinica,2013,50(3):591-599.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 10,2012
  • Revised:December 09,2012
  • Adopted:January 05,2013
  • Online: March 04,2013
  • Published: