Effects of Application of Organic Materials to Apple Trees through Vertical Holes on Soil Nitrate Metabolism, and Leaf Photosynthesis of Apple
Author:
Affiliation:

Clc Number:

Fund Project:

Supported by the National Natural Science Foundation of China (Nos. 31772251 and 31372016), the National Key Technology R & D Program of China (No. 2014BAD16B02) , and the Key Research and Development Program of Shandong Province in China (No. 2016ZDJS10A01)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    【Objective】Drilling of holes in soil can improve soil aeration, and application of organic material can increase soil organic matter content. The study was carried out to investigate effects of the two used simultaneously on soil nitrate metabolism, and leaf photosynthesis, water use efficiency (WUE) and plant growth of apple trees. In a field experiment of this study, four different kinds of organic materials were applied, separately, into the vertical holes dug within the root zone of the trees. This study was expected to be able to provide certain reference for development of new technology for soil management in apple orchards 【Method】 Four-year-old red Fuji apple trees cultivated in the root cellar were used as test material. Holes, 15 cm in diameter and 50 cm in depth were drilled around the trees within their root zones, and then corn stalks (CS), fruit tree branches (FTB), biochar (BC) and fermented sawdust of fruit tree branches (FFB), which are good in aeration, were applied, separately, into the holes. Nitrification and denitrification, nitrate reductase (NR) and nitrite reductase (NiR) activity, and inorganic nitrogen content in the soils of the root zones, net photosynthetic rate and transpiration rate of leaves, and WUE and growth of the plants were determined, six and ten months after the experiment started. 【Result】The determination, either six or ten months later, shows that application of CS or FFB improved soil nitrification and denitrification intensity, the most significantly especially CS, which did by 52.68% and 45.81%, respectively, 10 months after. BC exhibited similar effects, 6 months after the application. The determination 10 months after the application shows that all the four kinds of organic materials increased significantly soil nitrification and denitrification intensity. Both the determinatons show that all the four kinds of organic materials increased the activity of soil NR and NiR, except FTB, which decreased soil NiR activity in the first 6th months, and then ,increased soil NiR activity, but reduced NR activity in the 10 months. CS was the most significant in the effect, raising soil NR and NiR activities by 46.43% and 18.02%, respectively, in the first six months, while FFB was the most in the 10 month period, raising by 48.00% and 9.30%, respectively. The application of the organic materials in the experiment, regardless of kind, enhanced soil nitrate nitrogen content during the whole period as demonstrated by the determinations 6 and 10 months after the application, while CS, FTB and FFB reduced soil ammonium nitrogen content in the first six months and then raised the content thereafter. The four treatments also significantly increased relative soil water content in the 0~40 cm soil layer, relative chlorophyll content, and diameter and length of new shoots. Among the four, CS came on the top in the effect on relative soil water content in the 0~40 cm soil layer, and diameter and length of new shoots, being 7.80%, 11.63% and 17.19%, respectively, higher than the originals, and followed by FTB, whereas FTB and BC sat in the bottom in the effect on diameter of new shoots, and FFB did the same in the effect on length of new shoots. Besides, CS, FTB and BC significantly increased net photosynthetic rate and transpiration rate of leaves and WUE of trees as demonstrated by the determination 10 months after the treatment, especially CS which increased the parameters by 57.32%、22.22% and 29.12%, respectively, and was followed by BC and FTB. 【Conclusion】The practice of applying organic materials into vertical holes around the trees within their root zones has some positive effects on soil nitrate metabolism, leaf photosynthesis, WUE and plant growth, and the effects vary with kind of the organic material applied. Among the four applied in the experiment, corn stalk was the most effective.

    Reference
    Related
    Cited by
Get Citation

HUANG Ping, JI Tuo, YUE Songqing, LI Ping, XUN Mi, CAO Hui, YANG Hongqiang. Effects of Application of Organic Materials to Apple Trees through Vertical Holes on Soil Nitrate Metabolism, and Leaf Photosynthesis of Apple[J]. Acta Pedologica Sinica,2018,55(5):1276-1285.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 27,2017
  • Revised:May 05,2018
  • Adopted:May 11,2018
  • Online: June 25,2018
  • Published: