Spatial and Temporal Patterns of Soil Microbial Functional Groups in Different Microhabitats in Sand-fixing Revegetation Area in the Tengger Desert
Author:
Affiliation:

Clc Number:

Q938.1

Fund Project:

Supported by the National Key Research and Development Program of China (No. 2017YFC0504301) and the National Natural Science Foundation of China (No.31971529)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective] Soil microorganisms are important regulator of nutrient cycles during plant growth. The species, quantity, and spatial distribution reflect the characteristics and transformation law of habitat soil. There constitute an important index to evaluate soil development status and vegetation succession. In the revegetation areas of arid deserts, most existing studies described the overall restoration, structure and function of soil microorganisms after sand-fixing revegetation construction. However, there are few studies on soil microbial functional groups that indicate the carbon, nitrogen and phosphorus cycles. Thus, this study, looks at soil microorganisms in the revegetation areas replanted in different years in the southeast edge of Tengger Desert. We explored the spatial distribution, seasonal changes, and the effects of different restoration years, plant species, microhabitat and physiochemical properties on the number of soil microorganisms.[Method] Soil composites 0-5, 5-10, and 10-20 cm layers were collectd in January, April, July and Octerber in 2017 under shrubs and between shrubs at Artemisia ordosica and Caragana korshinskii plots established in 1990 and replanted in 2010. The numbers of cellulolytic bacteria, ammonifying bacteria, nitrifying bacteria and phosphorus solubilizing bacteria were determined by dilution culture counting method. Three-factor analysis of variance was used to compare the differences of soil microbial functional groups, microhabitat and soil layer (fixed factors) and sampling time (repeated factor). The redundancy analysis and best fitting were used to explore the relationships between soil physicochemical properties and microorganisms.[Result] The results showed that:(1) with an increase in sand fixation age, the number of microbial functional groups increased significantly, and the number in soil surface layer (0-5 cm) was higher than those of deep layers (5-10 and 10-20 cm); (2) the number of microbial functional groups in soil carbon, nitrogen and phosphorus cycles showed obvious seasonal variations. For example, the number of cellulolytic bacteria distributed in "V" shape was high in summer but low in springwhile ammonifying and nitrifying bacteria showed a trend of slow increase from winter, spring, summer to autumn. Additionally, the number of phosphorus solubilizing bacteria decreased from winter to autumn to spring and summer; (3) the numbers of cellulolytic bacteria and phosphorus solubilizing bacteria in C. korshinskii and A. ordosica plots were higher in 1990 than in 2010 while the numbers of ammonifying and nitrifying bacteria in A. ordosica plot were higher in 2010 than in 1990; (4) total nitrogen and available phosphorus had significant effects on the number of microbial functional groups.[Conclusion] This study showed that important microbial functional groups involved soil carbon, nitrogen, and phosphorus cycles are mainly affected by planting time, microhabitat, and soil layer of sand-fixing revegetation, while short-term fluctuation is controlled by seasons. In the early stages of revegetation, A. ordosica promoted recovery of nitrogen-circulating microorganisms, while, C. korshinskii was more favorable to the recovery of carbon-circulating microorganisms in the late stage. Besides, total nitrogen and available phosphorus contents were the key factors determining the numbers of soil microbial functional groups. Presumably, plant growth and soil microbial reproduction in the late stage of sand-fixing revegetation succession may be mainly restricted by nitrogen. The results of this study provied a foundation for a better understanding of the interaction between microorganisms and soil characteristics in revegetation restoration, and strengthen our understanding of soil carbon, nitrogen and phosphorus cycles in arid deserts.

    Reference
    Related
    Cited by
Get Citation

YANG Guisen, L&#; Xingyu, HU Rui, HUANG Lei, ZHANG Zhishan. Spatial and Temporal Patterns of Soil Microbial Functional Groups in Different Microhabitats in Sand-fixing Revegetation Area in the Tengger Desert[J]. Acta Pedologica Sinica,2022,59(2):580-590.

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 14,2020
  • Revised:December 30,2020
  • Adopted:March 03,2021
  • Online: March 04,2021
  • Published: February 11,2022