查 询 高级检索+
共找到相关记录7条
    全 选
    显示方式:|
    • 生物质炭负载硫化纳米零价铁活化过硫酸盐降解土壤中典型恶臭苯系物的规律与机制

      2025, 62(1):127-140.DOI: 10.11766/trxb202310240433CSTR: 32215.14.trxb202310240433

      关键词:苯系物过硫酸盐硫化纳米零价铁生物质炭自由基降解机理
      摘要 (297)HTML (307)PDF 9.50 M (820)收藏

      摘要:纳米零价铁(nZVI)以及硫化纳米零价铁(S-nZVI)活化过硫酸盐(PS)降解土壤中的有机污染物是目前场地原位氧化修复技术的研究热点之一。苯系物(BTEX)是石化污染场地中典型的恶臭污染物,实现BTEX的高效去除并探究其降解机理有着重要的环境意义。本研究建立了以生物质炭负载硫化纳米零价铁(S-nZVI@BC)为活化剂的过硫酸盐氧化体系,探究不同条件下BTEX的降解效果,并与其他材料催化PS降解体系的效果进行了比较。同时基于化学探针实验、电子顺磁共振实验(EPR)及吹扫捕集-气质联用法(PT-GC-MS)测定的转化产物推测BTEX可能的降解途径。结果表明,S-nZVI@BC/PS体系在pH=3、S/Fe=1/4、Fe/C=1/2、材料投加量为0.01 g·g-1、PS浓度为30 mmol·L-1时对土壤中BTEX均有着95%以上的降解效果;S-nZVI@BC/PS 体系下苯、甲苯、乙苯、邻二甲苯的降解率在2 h内分别可达到96.7%、98.5%、96.9%、98.4%;S-nZVI@BC催化体系在所研究的五种不同催化剂体系表现最佳,即催化效果表现为:PS4˙-、HO˙及O2˙-三种活性自由基,且SO4˙-为反应过程中的主要活性物质;根据主要自由基及中间产物推测BTEX可能存在自由基加成及自由基抽氢两条降解途径。硫改性及生物质炭的负载有效提高了nZVI催化性能的稳定性,且S-nZVI@BC/PS可高效降解BTEX,该研究可为土壤中恶臭污染物高效降解技术的建立提供理论支撑。

    • 纳米Fe3O4/生物炭促进红壤性水稻土中六氯苯厌氧脱氯作用研究

      2024, 61(5):1310-1322.DOI: 10.11766/trxb202303290120CSTR: 32215.14.trxb202303290120

      关键词:吸附态亚铁厌氧还原脱氯异化铁还原电子转移
      摘要 (88)HTML (618)PDF 1.83 M (1812)收藏

      摘要:为明确磁铁矿(Fe3O4)与生物炭对厌氧土壤中六氯苯(HCB)还原脱氯降解的影响及其机理,首先制备并表征了纳米Fe3O4、生物炭及纳米Fe3O4/生物炭复合材料,采用红壤性水稻土的泥浆进行厌氧培养试验,分析反应体系的pH、Eh、吸附态和溶解态Fe(Ⅱ)与HCB脱氯降解过程之间的内在关系。结果发现,灭菌对照处理的HCB脱氯降解作用很弱,表明HCB还原脱氯主要在微生物的作用下进行;添加生物炭可通过降低土壤的酸性、增强反应体系的还原性且促进生成吸附态Fe(Ⅱ)而加速HCB还原脱氯降解;纳米Fe3O4促进HCB还原脱氯的效果较生物炭更强,主要归因于添加纳米Fe3O4使反应体系中生成更多的吸附态Fe(Ⅱ);纳米Fe3O4/生物炭复合材料促进HCB还原脱氯的效果较纳米Fe3O4更强,是因为Fe3O4/生物炭复合材料的比表面积更大且纳米Fe3O4的分散性更好,更有利于反应体系中的电子传递过程。因此,与纳米Fe3O4和生物炭相比,纳米Fe3O4/生物炭复合材料是一种更加理想的HCB污染土壤的修复剂。

    • 生物质炭对有机污染物的吸附及机理研究进展

      2017, 54(6):1313-1325.DOI: 10.11766/trxb201704060004

      关键词:生物质炭;有机污染物;吸附特性;吸附机理
      摘要 (5252)HTML (0)PDF 925.22 K (5710)收藏

      摘要:生物质炭是一种利用废弃生物质材料在缺氧或厌氧环境中热化学转换制备的多孔级富碳固体材料。因其吸附能力强,制备原料来源广泛,生产成本低且环境友好等优点受到学术界越来越多的关注。探究生物质炭对有机污染物的吸附机理和规律,对于评估其环境行为和应用价值至关重要。着重综述了目前研究报道的生物质炭吸附有机污染物的吸附机理,包括分配作用、表面吸附作用和孔隙截留等。一般低温生物质炭对非极性有机物的吸附机制以分配作用为主,这种非竞争性吸附机理可以解释高浓度有机污染物在生物质炭上的吸附过程。表面吸附是一种非线性竞争性吸附作用,是有机污染物在生物质炭表面有效吸附位点上形成静电作用或通过氢键、离子建、π-π相互作用等结合的过程。孔隙截留是另一种生物质炭固定有机污染物的微观机制,有机污染物在孔隙内部的分配和吸附也是生物质炭吸附能力的重要体现。而在实际复杂的污染环境中,各类生物质炭对有机污染物的吸附过程需要多种机制共同解释。此外,本文对吸附机制的影响因素进行了分析和总结,生物质炭自身理化特性决定了其应用价值,生物质炭的性质与有机污染物的极性、芳香性和分子大小等相匹配才能更好地实现吸附固定,不同的吸附环境如吸附介质、pH和共存离子等也会对吸附机制和吸附效果产生影响。最后,文章进一步探讨了生物质炭吸附有机污染相关研究未来应着重解决的问题,以及生物质炭在有机污染土壤修复中的应用前景。

    • 多环芳烃污染土壤生物联合强化修复研究进展

      2016, 53(3):561-571.DOI: 10.11766/trxb201511300474

      关键词:土壤;多环芳烃;生物联合修复;强化技术;表面活性剂;固定化微生物
      摘要 (3014)HTML (0)PDF 1016.76 K (4817)收藏

      摘要:多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是广泛存在于环境中的一类有毒有机污染物。在PAHs污染土壤修复领域中,运用一些生物化学的方式来强化生物联合修复技术可以有效缩短生物修复的时间,大大提高修复效率,最具发展前景和应用价值。本文主要以植物-微生物、植物-微生物-土壤动物两种生物联合修复方式为对象,结合各自的特点、机理和实例,推断了其修复机制的内在原因,总结了影响土壤中PAHs降解效率的主要因素(包括:PAHs的浓度水平、根系分泌物的种类、外源添加降解菌和土壤动物的数量和种类、菌属或土壤动物之间的种间竞争和部分环境因素等);同时通过综述近年来国内外强化生物联合修复PAHs污染土壤的技术原理、应用成果和存在的一些问题,指出了不同情况下制约PAHs强化降解进程的潜在限制因子(包括:表面活性剂和固定化微生物的添加量、不同表面活性剂的适度混合、载体材料的性质、固定化方式的选取、土壤养分和水分含量等);并强调在进行强化修复的过程中,要注重现场应用和安全性评价,为多环芳烃污染土壤的生物联合强化修复研究提供了理论依据和技术参考。

    • 信号分子N-酰基高丝氨酸内酯分析方法研究进展

      2016, 53(4):832-844.DOI: 10.11766/trxb201511230492

      关键词:N酰基高丝氨酸内酯;色谱-质谱;生物传感器;核磁共振;酶联免疫
      摘要 (2949)HTML (0)PDF 8.38 M (3138)收藏

      摘要:细菌能自发产生、释放特定的信号分子,并感知其浓度变化,调节微生物的群体行为,这一调控系统称为群体感应。革兰氏阴性菌的群体感应一般由N-酰基高丝氨酸内酯(Acyl-homoserine lactones, AHLs)这类信号分子介导。在简要总结AHLs分子及其衍生物结构的基础上,结合近年来国内外研究进展,对AHLs的提取、鉴定和检测等分析测试方法进行了综述,旨在为建立土壤中AHLs的检测方法以及深入研究AHLs信号分子在土壤中的环境行为奠定基础。

    • 土壤提取液中酰基高丝氨酸内酯的气相色谱-质谱检测方法优化

      2015, 52(1):95-103.DOI: 10.11766/trxb201404230193

      关键词:信号分子;萃取;回收率;气相色谱-质谱;土壤提取液
      摘要 (2906)HTML (0)PDF 9.46 M (3447)收藏

      摘要:建立并优化了利用气相色谱-质谱(Gas chromatography-mass spectrometry,GC-MS)检测酰基高丝氨酸内酯(Acyl-homoserine lactones,AHLs)的分析方法。通过优化升温程序,采用选择离子检测(m/z 143),可同时检测7种AHLs(C4、C6、C7、C8、C10、C12和C14),检出限分别为1.50、2.00、1.50、2.00、2.00、2.50和2.50 µg l-1,在2.0 mg l-1浓度范围内均呈线性关系(R2>0.997)。加标回收率实验表明,采用乙酸乙酯萃取,水中7种AHLs的回收率均在54%~97%之间;不同比例的土水体系中,砖红壤和黄棕壤提取液中AHLs的回收率均在56%~108%之间。不同介质中AHLs回收率与其LogP值(P:AHLs在正丁醇和水溶液中的 分配比)及水溶解度对数均显著相关,表明采用乙酸乙酯萃取水和土壤提取液中的AHLs时,回收率主要与AHLs的LogP值和水溶解度有关。采用该方法对土壤提取液中AHLs进行测定发现砖红壤和黄棕壤提取液中7种AHLs的浓度分别为3.8~8.7 µg l-1和4.2~9.8 µg l-1。因此,不仅对于水溶液,土壤提取液等复杂介质中的AHLs也可以采用乙酸乙酯萃取后GC-MS进行分析测定。

    • 小麦秸秆生物炭对高氯代苯的吸附过程与机制研究

      2015, 52(5):1096-1105.DOI: 10.11766/trxb201411050559

      关键词:生物炭;持久性有机污染物;吸附动力学;吸附等温线
      摘要 (2565)HTML (0)PDF 2.71 M (4230)收藏

      摘要:以小麦秸秆为原料,分别在三种温度(400℃、500℃、600℃)下制备小麦秸秆生物炭,并标记为WSB400、WSB500、WSB600。分析了秸秆炭的元素组成,表征了其结构和表面特征,研究了秸秆炭对五氯苯和六氯苯的吸附动力学和吸附等温线。结果表明,升温热解使得小麦秸秆有机组分炭化、极性官能团消除,炭化程度增强;三种秸秆炭均可快速高效地吸附高氯代苯,且对六氯苯的吸附要快于五氯苯,假二级动力学方程能更好地拟合秸秆炭对氯苯的吸附动力学过程;不同秸秆炭对氯苯的饱和吸附量大小顺序为WSB400>WSB500>WSB600;对吸附等温线进行分析可得,随着秸秆炭制备温度的升高,其对氯苯的吸附等温曲线由线性变为非线性,吸附机理则由以分配作用为主过渡到分配作用与表面吸附共同作用。

    上一页1下一页
    共1页7条记录 跳转到GO